Abstract:Retinal vessel segmentation is one of the preliminary tasks for developing diagnosis software systems related to various retinal diseases. In this study, a fully automated vessel segmentation system is proposed. Firstly, the vessels are enhanced using a Frangi Filter. Afterwards, Structure Tensor is applied to the response of the Frangi Filter and a 4-D tensor field is obtained. After decomposing the Eigenvalues of the tensor field, the anisotropy between the principal Eigenvalues are enhanced exponentially. Furthermore, this 4-D tensor field is converted to the 3-D space which is composed of energy, anisotropy and orientation and then a Contrast Limited Adaptive Histogram Equalization algorithm is applied to the energy space. Later, the obtained energy space is multiplied by the enhanced mean surface curvature of itself and the modified 3-D space is converted back to the 4-D tensor field. Lastly, the vessel segmentation is performed by using Otsu algorithm and tensor coloring method which is inspired by the ellipsoid tensor visualization technique. Finally, some post-processing techniques are applied to the segmentation result. In this study, the proposed method achieved mean sensitivity of 0.8123, 0.8126, 0.7246 and mean specificity of 0.9342, 0.9442, 0.9453 as well as mean accuracy of 0.9183, 0.9442, 0.9236 for DRIVE, STARE and CHASE_DB1 datasets, respectively. The mean execution time of this study is 6.104, 6.4525 and 18.8370 s for the aforementioned three datasets respectively.
Colorectal cancer is the fourth fatal disease in the world, and the massive burden on the pathologists related to the classification of precancerous and cancerous colorectal lesions can be decreased by deep learning (DL) methods. However, the data privacy of the patients is a big challenge for being able to train deep learning models using big medical data. Federated Learning is a rising star in this era by providing the ability to train deep learning models on different sites without sacrificing data privacy. In this study, the Big Transfer model, which is a new General Visual Representation Learning method and six other classical DL methods are converted to the federated version. The effect of the federated learning is measured on all these models on four different data settings extracted from the MHIST and Chaoyang datasets. The proposed models are tested for single learning, centralized learning, and federated learning. The best AUC values of federated learning on Chaoyang are obtained by the Big Transfer and VGG models at 90.77% and 90.76%, respectively, whereas the best AUC value on MHIST is obtained by the Big Transfer model at 89.72%. The overall obtained results of models on all data settings show that the contribution of Federated Learning with respect to single learning is 4.71% and 11.68% for the “uniform” and “label‐biased” data settings of Chaoyang, respectively, and 6.89% for the “difficulty level‐biased” data setting of MHIST. Thus, it is experimentally shown that federated learning can be applied to the field of computational pathology for new institutional collaborations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.