A bimodal extension of the generalized gamma distribution is proposed by using a mixing approach. Some distributional properties of the new distribution are investigated. The maximum likelihood (ML) estimators for the parameters of the new distribution are obtained. Real data examples are given to show the strength of the new distribution for modeling data.
A two-dimensional shadow may encompass more information than its corresponding three-dimensional object. Indeed, if we rotate the object, we achieve a pool of observed shadows from different angulations, gradients, shapes and variable length contours that make it possible for us to increase our available information. Starting from this simple observation, we show how informational entropies might turn out to be useful in the evaluation of scale-free dynamics in the brain. Indeed, brain activity exhibits a scale-free distribution that leads to the variations in the power law exponent typical of different functional neurophysiological states. Here we show that modifications in scaling slope are associated with variations in Rényi entropy, a generalization of Shannon informational entropy. From a three-dimensional object's perspective, by changing its orientation (standing for the cortical scale-free exponent), we detect different two-dimensional shadows from different perception angles (standing for Rényi entropy in different brain areas). We show how, starting from known values of Rényi entropy (easily detectable in brain fMRIs or EEG traces), it is feasible to calculate the scaling slope in a given moment and in a given brain area. Because changes in scale-free cortical dynamics modify brain activity, this issue points towards novel approaches to mind reading and description of the forces required for transcranial stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.