Purpose
Main constraints for an assembly line balancing problem (ALBP) are cycle time/number of stations and task precedence relations. However, due to the technological and organizational limitations, several other restrictions can be encountered in real production systems. These restrictions are called as assignment restrictions and can be task assignment, station, resource and distance limitations. The purpose of the study is to evaluate the effects of these restrictions on ALBP using constraint programming (CP) model.
Design/methodology/approach
A novel CP model is proposed and compared to mixed-integer programming (MIP) as a benchmark. The objective is to minimize the cycle time for a given number of stations. The authors also provide explicit anthology of the assignment restriction effects on line efficiency, the solution quality and the computation time.
Findings
The proposed approach is verified with the literature test instances and a real-life problem from a furniture manufacturing company. Computational experiments show that, despite the fact that additional assignment restrictions are problematic in mathematical solutions, CP is a versatile exact solution alternative in modelling and the solution quality.
Practical implications
Assembly line is a popular manufacturing system in the making of standardized high volume products. The problem of assembly line balancing is a crucial challenge in these settings and consists of assigning tasks to the stations by optimizing one or more objectives. Type-2 AR-ALBP is a specific case with the objective function of minimizing the cycle time for a given number of stations. It further assumes assignment restrictions that can be confronted due to the technological limitations or the strategic decisions of the company management. This is especially encountered in rebalancing lines.
Originality/value
Several solution approaches such as mathematical modelling, heuristic and meta-heuristic are proposed to solve the ALBP in the literature. In this study, a new approach has been presented using CP. Efficient models are developed for Type-2 ALBP with several assignment restrictions. Previous studies have not considered the problem to the presented extent. Furthermore, to the best of the authors’ knowledge, the paper is the first study that solves ALBP with assignment restrictions using CP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.