Multiple Sclerosis (MS) causes the central nervous system to malfunction due to inflammation surrounding nerve cells. Detection of MS at an early stage is very important to prevent progressive MS attacks. Clinical findings, cerebrospinal fluid examinations, the evoked potentials, magnetic resonance imaging (MRI) findings have an important role in the diagnosis and follow-up of MS. However, many of the findings on MRI may indicate brain disorders other than MS. In addition, the clinical practices accepted by physicians for MS detection are very limited. In this study, a Mask R-CNN based method in two dataset is proposed for the automatic detection of MS lesions on magnetic resonance scans.We also improved the ROI detection stage with RPN in the Mask R-CNN to easily adapt for different lesion sizes. MS lesions in different sizes in the dataset are successfully detected with 84.90% Dice similarity rate and 87.03% precision rates using the proposed method. In addition, volumetric overlap error and lesion-wise true positive rate are obtained as 12.97% and 73.75%, respectively. Moreover, performance tests of the use of different numbers of GPU hardware structures are also performed and the evaluation of its effects on processing speed is performed on experimental studies..
Özet: Bu araştırma; 2014-2015 yetiştirme döneminde, 9 tritikale genotipi (41- , DZ9-01-01, DZ9-01-02 ve DZ9-06)'nin Diyarbakır ve Mardin lokasyonlarında verim ve kalite ile ilgili bazı özellikleri incelenerek, bölgeye adaptasyonlarının belirlenmesi amacıyla yürütülmüştür. Çalışmada ayrıca, 2 ekmeklik buğday çeşidi (Pehlivan ve Cemre) de standart olarak kullanılmıştır. Araştırma, tesadüf blokları deneme desenine göre 4 tekerrürlü olarak yürütülmüştür. Çalışmada tane verimi, bin tane ağırlığı, hektolitre ağırlığı, protein içeriği, nişasta içeriği, gluten (yaş öz) içeriği ve zeleny sedimantasyon özellikleri incelenmiştir. Araştırma bulgularına göre lokasyonlar arası farklılıklar protein içeriği hariç, diğer tüm özellikler için önemli bulunmuştur. Araştırmada ele alınan genotiplere ait tane verimi 537.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.