In this work, the [Formula: see text]-Schrödinger equations with symmetric polynomial potentials are considered. The spectrum of the model is obtained for several values of [Formula: see text], and the limiting case as [Formula: see text] is considered. The Rayleigh–Ritz variational method is adopted to the system. The discrete [Formula: see text]-Hermite I polynomials are handled as basis in this method. Furthermore, the following potentials with numerous results are presented as applications: [Formula: see text]-harmonic, purely [Formula: see text]-quartic and [Formula: see text]-quartic oscillators. It is also shown that the obtained results confirm the ones that exist in the literature for the continuous case.
Discrete q-Hermite I polynomials are a member of the q-polynomials of the Hahn class. They are the polynomial solutions of a second order difference equation of hypergeometric type. These polynomials are one of the q-analogous of the Hermite polynomials. It is well known that the q-Hermite I polynomials approach the Hermite polynomials as q tends to 1. In this chapter, the orthogonality property of the discrete q-Hermite I polynomials is considered. Moreover, the orthogonality relation for the k-th order q-derivatives of the discrete q-Hermite I polynomials is obtained. Finally, it is shown that, under a suitable transformation, these relations give the corresponding relations for the Hermite polynomials in the limiting case as q goes to 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.