Aim of study: Pinus brutia is the most widespread conifer forest tree species in Turkey. It is mainly distributed in fire sensitive regions of the country. The economic importance in wood production and the deterministic role in forest fires fighting activities make this forest tree more valuable and important. This study describes crown fuel load of suppressed trees in non-treated young Calabrian pine stands. Area of study: The study area is located in the Western Black Sea region of Turkey. Sampling plots were located in Hacımahmut Forest Planning Unit. Material and methods: Trees were selected from non-treated young Calabrian pine plantation stands and used to obtain live crown fuel load and characteristics. For this purpose, 30 young suppressed trees were cut and sampled. Main results: In sampled trees, oven dried total live needle biomass ranged between 0.54 kg and 3.19 kg and total live crown fuel load chanced between 1.96 kg and 12.73 kg. Regression models to estimate crown fuel load were developed according to some tree characteristics. Models developed explained 0.79 to 0.89% of the observed variation. Highlights: Regression analysis indicated that the total live crown fuel load was strongly correlated with both diameters at breast height (DBH) and crown base height (CBH).
Successful management of young, fire-prone Calabrian pine forests requires an accurate characterization of surface and canopy fuel loads at stand level. This study characterizes the surface and canopy fuel characteristics in unthinned Calabrian pine plantations in Turkey. Fifteen sample plots were measured to determine the surface and crown fuel characteristics of very young, young and middle aged Calabrian pine stands (10 to 28 years old). Thirty-six trees were destructively sampled to quantify the crown fuel loads and canopy fuel characteristics of the stands. Surface fuel load ranged from 11.38 t ha -1 in the young stands to 35.27 t ha -1 in the middle aged stands. Dead fuel load as ladder fuels on the trees ranged from 0.77 kg in very young stands to 13.56 kg in the young stands. Live fuel loads on the trees ranged from 0.77 kg to 23.29 kg in the young aged stands. Total active crown fuel load was 58.7%, 52.1% and 49.5% of total crown fuel load in very young, young and middle aged stands, respectively. Our results improve the current crown fuel model predictions and showed the importance of dead fuel load in fire management studies both for the determination of crown fuel loads and the calculation of carbon stocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.