This study proposes a framework for defining ME expressions, in which preprocessing, feature extraction with deep learning, feature selection with an optimization algorithm, and classification methods are used. CASME-II, SMIC-HS, and SAMM, which are among the most used ME datasets in the literature, were combined to overcome the under-sampling problem caused by the datasets. In the preprocessing stage, onset, and apex frames in each video clip in datasets were detected, and optical flow images were obtained from the frames using the FarneBack method. The features of these obtained images were extracted by applying AlexNet, VGG16, MobilenetV2, EfficientNet, Squeezenet from CNN models. Then, combining the image features obtained from all CNN models. And then, the ones which are the most distinctive features were selected with the Particle Swarm Optimization (PSO) algorithm. The new feature set obtained was divided into classes positive, negative, and surprise using SVM. As a result, its success has been demonstrated with an accuracy rate of 0.8784 obtained in our proposed ME framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.