Purpose One of the practical issues in the area of location and allocation is the location of the hub. In recent years, exchange rates have fluctuated sharply for a number of reasons such as sanctions against the country. Natural disasters that have occurred in recent years caused delays in hub servicing. The purpose of this study is to develop a mathematical programming model to minimize costs, maximize social responsibility and minimize fuel consumption so that in the event of a disruption in the main hub, the flow of materials can be directed to its backup hub to prevent delays in flow between nodes and disruptions in hubs. Design/methodology/approach A multi-objective mathematical programming model is developed considering uncertainty in some parameters, especially cost as fuzzy numbers. In addition, backup hubs are selected for each primary hub to deal with disruption and natural disasters and prevent delays. Then, a robust possibilistic method is proposed to deal with uncertainty. As the hub location-allocation problem is considered as NP-Hard problems so that exact methods cannot solve them in large sizes, two metaheuristic algorithms including a non-dominated sorting genetic algorithm non-dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimization (MOPSO) are applied to tackle the problem. Findings Numerical results show the proposed model is valid. Also, they demonstrate that the NSGA-II algorithm outperforms the MOPSO algorithm. Practical implications The proposed model was implemented in one of the largest food companies in Iran, which has numerous products manufactured in different cities, to seek the hub locations. Also, due to several reasons such as road traffic and route type the difference in the rate of fuel consumption between nodes, this model helps managers and decision-makers to choose the best locations to have the least fuel consumption. Moreover, as the hub set up increases the employment rate in that city and has social benefits as it requires hiring some staff. Originality/value This paper investigates the hub location problem considering backup hubs with multiple objective functions to deal with disruption and uncertainty. Also, this study examines how non-hub nodes are assigned to hub nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.