The advent of high-throughput sequencing technology has resulted in the ability to measure millions of single-nucleotide polymorphisms (SNPs) from thousands of individuals. Although these high-dimensional data have paved the way for better understanding of the genetic architecture of common diseases, they have also given rise to challenges in developing computational methods for learning epistatic relationships among genetic markers. We propose a new method, named cuckoo search epistasis (CSE) for identifying significant epistatic interactions in population-based association studies with a case-control design. This method combines a computationally efficient Bayesian scoring function with an evolutionary-based heuristic search algorithm, and can be efficiently applied to high-dimensional genome-wide SNP data. The experimental results from synthetic data sets show that CSE outperforms existing methods including multifactorial dimensionality reduction and Bayesian epistasis association mapping. In addition, on a real genome-wide data set related to Alzheimer's disease, CSE identified SNPs that are consistent with previously reported results, and show the utility of CSE for application to genome-wide data.
Summary Modern data collection techniques, which often produce different types of relevant information, call for new statistical learning methods that are adapted to cope with data integration. In the paper Bayesian inference is considered for mixtures of regression models with an unknown number of components, that facilitates data integration and variable selection for high dimensional data. In the approach presented, named data integrative mixture of regressions, data integration is accomplished by introducing a new data allocation scheme that summarizes additional data in the form of an informative prior on latent variables. To cope with high dimensionality, a shrinkage‐type prior is assumed on the regression parameters, and a posteriori variable selection is conducted based on Bayesian credible intervals. Posterior estimation is achieved via a Markov chain Monte Carlo algorithm. The method is validated through simulation studies and illustrated by its performance on real data.
Cross-sectional studies may shed light on the evolution of a disease like cancer through the comparison of patient traits among disease stages. This problem is especially challenging when a gene-gene interaction network needs to be reconstructed from omics data, and, in addition, the patients of each stage need not form a homogeneous group. Here, the problem is operationalized as the estimation of stage-wise mixtures of Gaussian graphical models (GGMs) from high-dimensional data. These mixtures are fitted by a (fused) ridge penalized EM algorithm. The fused ridge penalty shrinks GGMs of contiguous stages. The (fused) ridge penalty parameters are chosen through cross-validation. The proposed estimation procedures are shown to be consistent and their performance in other respects is studied in simulation. The down-stream exploitation of the fitted GGMs is outlined. In a data illustration the methodology is employed to identify gene-gene interaction network changes in the transition from normal to cancer prostate tissue.
In high-dimensional genome-wide (GWA) data, a key challenge is to detect genomic variants that interact in a nonlinear fashion in their association with disease. Identifying such genomic interactions is important for elucidating the inheritance of complex phenotypes and diseases. In this paper, we introduce a new computational method called Informative Bayesian Model Selection (IBMS) that leverages correlation among variants in GWA data due to the linkage disequilibrium to identify interactions accurately in a computationally efficient manner. IBMS combines several statistical methods including canonical correlation analysis, logistic regression analysis, and a Bayesians statistical measure of evaluating interactions. Compared to BOOST and BEAM that are two widely used methods for detecting genomic interactions, IBMS had significantly higher power when evaluated on synthetic data. Furthermore, when applied to Alzheimer's disease GWA data, IBMS identified previously reported interactions. IBMS is a useful method for identifying variants in GWA data, and software that implements IBMS is freely available online from http://lbb.ut.ac.ir/Download/LBBsoft/IBMS.
BackgroundObserved levels of gene expression strongly depend on both activity of DNA binding transcription factors (TFs) and chromatin state through different histone modifications (HMs). In order to recover the functional relationship between local chromatin state, TF binding and observed levels of gene expression, regression methods have proven to be useful tools. They have been successfully applied to predict mRNA levels from genome-wide experimental data and they provide insight into context-dependent gene regulatory mechanisms. However, heterogeneity arising from gene-set specific regulatory interactions is often overlooked.ResultsWe show that regression models that predict gene expression by using experimentally derived ChIP-seq profiles of TFs can be significantly improved by mixture modelling. In order to find biologically relevant gene clusters, we employ a Bayesian allocation procedure which allows us to integrate additional biological information such as three-dimensional nuclear organization of chromosomes and gene function. The data integration procedure involves transforming the additional data into gene similarity values. We propose a generic similarity measure that is especially suitable for situations where the additional data are of both continuous and discrete type, and compare its performance with similar measures in the context of mixture modelling.ConclusionsWe applied the proposed method on a data from mouse embryonic stem cells (ESC). We find that including additional data results in mixture components that exhibit biologically meaningful gene clusters, and provides valuable insight into the heterogeneity of the regulatory interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.