Currently, smart farming is considered an effective solution to enhance the productivity of farms; thereby, it has recently received broad interest from service providers to offer a wide range of applications, from pest identification to asset monitoring. Although the emergence of digital technologies, such as the Internet of Things (IoT) and low-power wide-area networks (LPWANs), has led to significant advances in the smart farming industry, farming operations still need more efficient solutions. On the other hand, the utilization of unmanned aerial vehicles (UAVs), also known as drones, is growing rapidly across many civil application domains. This paper aims to develop a farm monitoring system that incorporates UAV, LPWAN, and IoT technologies to transform the current farm management approach and aid farmers in obtaining actionable data from their farm operations. In this regard, an IoT-based water quality monitoring system was developed because water is an essential aspect in livestock development. Then, based on the Long-Range Wide-Area Network (LoRaWAN®) technology, a multi-channel LoRaWAN® gateway was developed and integrated into a vertical takeoff and landing drone to convey collected data from the sensors to the cloud for further analysis. In addition, to develop LoRaWAN®-based aerial communication, a series of measurements and simulations were performed under different configurations and scenarios. Finally, to enhance the efficiency of aerial-based data collection, the UAV path planning was optimized. Measurement results showed that the maximum achievable LoRa coverage when operating on-air via the drone is about 10 km, and the Longley–Rice irregular terrain model provides the most suitable path loss model for the scenario of large-scale farms, and a multi-channel gateway with a spreading factor of 12 provides the most reliable communication link at a high drone speed (up to 95 km/h). Simulation results showed that the developed system can overcome the coverage limitation of LoRaWAN® and it can establish a reliable communication link over large-scale wireless sensor networks. In addition, it was shown that by optimizing flight paths, aerial data collection could be performed in a much shorter time than industrial mission planning (up to four times in our case).
Ever since the introduction of fifth generation (5G) mobile communications, the mobile telecommunications industry has been debating whether 5G is an “evolution” or “revolution” from the previous legacy mobile networks, but now that 5G has been commercially available for the past few years, the research direction has recently shifted towards the upcoming generation of mobile communication system, known as the sixth generation (6G), which is expected to drastically provide significant and evolutionary, if not revolutionary, improvements in mobile networks. The promise of extremely high data rates (in terabits), artificial intelligence (AI), ultra-low latency, near-zero/low energy, and immense connected devices is expected to enhance the connectivity, sustainability, and trustworthiness and provide some new services, such as truly immersive “extended reality” (XR), high-fidelity mobile hologram, and a new generation of entertainment. Sixth generation and its vision are still under research and open for developers and researchers to establish and develop their directions to realize future 6G technology, which is expected to be ready as early as 2028. This paper reviews 6G mobile technology, including its vision, requirements, enabling technologies, and challenges. Meanwhile, a total of 11 communication technologies, including terahertz (THz) communication, visible light communication (VLC), multiple access, coding, cell-free massive multiple-input multiple-output (CF-mMIMO) zero-energy interface, intelligent reflecting surface (IRS), and infusion of AI/machine learning (ML) in wireless transmission techniques, are presented. Moreover, this paper compares 5G and 6G in terms of services, key technologies, and enabling communications techniques. Finally, it discusses the crucial future directions and technology developments in 6G.
The success of a rural wireless monitoring system depends on establishing a reliable wireless link over the TCP/IP communication protocol in a challenging terrain and elevation profile. Several studies have shown that link reliability in a rural area can neither be predicted with high accuracy nor precisely modeled using existing mathematical channel modeling tools. Hence, the use of the empirical approach to infer wireless link reliability. This work focuses on the revival of a rural hydrological/water monitoring system with emphasis on the wireless link located in Tasik Chini, a lake with UNESCO biosphere status. The contributions of this study include: understudy the link reliability of a centralized wireless sensor network infrastructure system using the 2G and Long Range (LoRa) wireless network, the performance limitation of the low data wireless sensor network in a rural environment, approaches to revive rural water station monitoring center and finally highlight potential opportunities in rural wireless communications. View less Metadata Advertisement
The Internet of Things (IoT) has rapidly expanded for a wide range of applications towards a smart future world by connecting everything. As a result, new challenges emerge in meeting the requirements of IoT applications while retaining optimal performance. These challenges may include power consumption, quality of service, localization, security, and accurate modeling and characterization of wireless channel propagation. Among these challenges, the latter is critical to establishing point-to-point wireless communication between the sensors. Channel modeling also varies depending on the features of the surrounding area, which have a direct impact on the propagation of wireless signals. This presents a difficult task for network planners to efficiently design and deploy IoT applications without understanding the appropriate channel model to analyze coverage and predict optimal deployment configurations. As a result, this challenge has attracted considerable interest in academic and industrial communities in recent years. Therefore, this review presents an overview of current breakthroughs in wireless IoT technologies. The challenges in such applications are then briefly reviewed, focusing on wireless channel propagation modeling and characterization. Finally, the study gives a generalized form of commonly used channel models and a summary of recent channel modeling developments for wireless IoT technology. The outcome of this review is expected to provide a new understanding of the propagation behavior of present and future wireless IoT technologies, allowing network engineers to undertake correct planning and deployment in any environment. Additionally, the study may serve as a guideline for future channel modeling and characterization studies.
Conventional and license-free radio-controlled drone activities are limited to a line-of-sight (LoS) operational range. One of the alternatives to operate the drones beyond the visual line-of-sight (BVLoS) range is replacing the drone wireless communications system from the conventional industrial, scientific, and medical (ISM) radio band to a licensed cellular-connected system. The Long Term Evolution (LTE) technology that has been established for the terrestrial area allows command-and-control and payload communications between drone and ground station in real-time. However, with increasing height above the ground, the radio environment changes, and utilizing terrestrial cellular networks for drone communications may face new challenges. In this regard, this paper aims to develop an LTE-based control system prototype for low altitude small drones and investigate the feasibility and performance of drone cellular connectivity at different altitudes with measuring parameters such as latency, handover, and signal strength. The measurement results have shown that by increasing flight height from ground to 170 m the received signal power and the signal quality levels were reduced by 20 dBm and 10 dB respectively, the downlink data rate decreased to 70%, and latency increased up to 94 ms. It is concluded that although the existing LTE network can provide a minimum requirement for drone cellular connectivity, further improvements are still needed to enhance aerial coverage, eliminate interference, and reduce network latency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.