Many properties of cathodic arcs from single-element cathodes show a correlation to the cohesive energy of the cathode material. For example, the burning voltage, the erosion rate, or, to a lesser extent, plasma properties like electron temperatures or average ion energy and charge states. For multi-element cathodes, various phases with different cohesive energies can initially be present in the cathode, or form due to arc exposure, complicating the evaluation of such correlations. To test the influence of morphology and phase composition of multi-element cathodes on cathodic arc properties, a Nb–Al cathode model system was used that includes: pure Nb and Al cathodes; intermetallic Nb3Al, Nb2Al and NbAl3 cathodes; and three composite Nb–Al cathodes with atomic ratios corresponding to the stoichiometric ratios of the intermetallic phases. Pulsed cathodic arc plasmas from these cathodes were examined using a mass-per-charge and energy-per-charge analyzer, showing that charge-state-resolved ion energy distributions of plasmas from the intermetallic and corresponding composite cathodes are nearly identical. An examination of converted layers of eroded cathodes using x-ray diffraction and scanning electron microscopy indicates the formation of a surface layer with similar phase composition for intermetallic and their corresponding composite cathode types. The average arc voltages do not follow the trend of cohesive energies of Nb, Al and intermetallic Nb–Al phases, which have been calculated using density functional theory. Possible reasons for this effect are discussed based on the current knowledge of multi-element arc cathodes and their arc plasma available in literature.
Nowadays, multi-element cathodes are frequently employed to grow multi-element thin films and coatings using cathodic arc deposition processes. During cathode erosion, the cathode spot sequentially ignites on the cathode surface and imposes melting–solidification cycles that lead to material intermixing and the formation of a modified layer on the cathode surface. To allow us to study these surface modifications, a 10 μm thick Mo/Al multilayer coating was sputter-deposited onto a standard Ti arc cathode. This cathode was eroded by a dc steered arc discharge for a short duration enabling the observation of single craters formed by type 1 and 2 cathode spots. Furthermore, separated clusters of overlapping craters and a fully eroded surface caused by different stages of erosion were differentiated when scanning the erosion track in the lateral direction. Cross sections of single craters were prepared by focused ion beam techniques while metallographic methods were applied to obtain cross sections of overlapping craters and the modified layer. The layers of the multilayer coating acted as trace markers providing new insights into the material intermixing within craters, the material displacements during crater formation, the plasma pressure acting on the craters, and the temperature gradient (heat-affected zone) below the craters. The observations are discussed within the framework of established arc crater formation models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.