The characteristics of municipal solid waste (MSW) play a key role in many aspects of waste disposal facilities and landfills. Because most of a landfill is made up of MSW, the overall stability of the landfill slopes are governed by the strength parameters and physical properties of the MSW. These parameters are also important in interactions involving the waste body and the landfill structures: cover liner, leachate and gas collection systems. On the other hand, the composition of the waste, which affects the geotechnical behavior of the MSW, is dependent on a variety of factors such as climate, disposal technology, the culture and habits of the local community. It is therefore essential that the design and stability evaluations of landfills in each region be performed based on the local conditions and the geotechnical characteristic of the MSW. The Bandeirantes Landfill, BL, in São Paulo and the Metropolitan Center Landfill, MCL, in Salvador, are among the biggest landfills in Brazil. These two disposal facilities have been used for the development of research involving waste mechanics in recent years. Considerable work has been made in the laboratory and in the field to evaluate parameters such as water and organic contents, composition, permeability, and shear strength. This paper shows and analyzes the results of tests performed on these two landfills. The authors believe that these results could be a good reference for certain aspects and geotechnical properties of MSW materials in countries with similar conditions.
Clayey soils are the most common material used in waterproofing and play an essential role in waste and contamination control. Permeability is a key parameter in such problems and its determination is needed in ensuring the satisfactory performance of the soil. Research has shown that a permeant fluid with a low dielectric constant can shrink the double layer around the clay particles which will, in turn, increase the permeability of the soil. In this paper, the permeability of two types of clay with different plasticity, exposed to the flow of water and methanol as polar and miscible solvents and gasoline and car oil as non-polar and immiscible solvents is investigated. In addition, the effect of soil properties such as plasticity and compaction water content on permeability of the samples is examined. To this end, soil samples are prepared and compacted at various water contents. Then, permeability tests are conducted according to the modified constant head method and the effects of parameters such as the fluid dielectric constant, water content of the samples and soil plasticity are examined. The results demonstrate that the lower dielectric constant of the organic fluid decreases the thickness of the double layer, providing more space for the flow of the permeant and as a result, the permeability of the clay increases. The reduction of the permeant dielectric constant from 80.4 to 2.28 led to a remarkable increase in soil permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.