Abstract-Transcranial magnetic stimulation has become an established tool in experimental cognitive neuroscience and has more recently been applied clinically. The current spatial extent of neural activation is several millimeters but with greater specificity, transcranial magnetic stimulation can potentially deliver real time feedback to reinforce or extinguish behavior by exciting or inhibiting localized neural circuits. The specificity of transcranial magnetic stimulation is a function of the stimulation coil geometry. In this paper, a practical multilayer framework for the design of miniaturized stimulation coils is presented. This framework is based on a magnet wire fabricated from 2500 braided ultrafine wires. Effects of coil bending angle on stimulation specificity are examined using realistic finite element method simulations. A novel stimulation coil with one degree of freedom is also proposed that shows improved specificity over the conventional fixed coils. This type of coil could be potentially used as a feedback system for a bidirectional brain machine interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.