Newly synthesized nanocars have shown great potential to transport molecular payloads. Since wheels of nanocars dominate their motion, the study of the wheels helps us to design a suitable surface for them. We investigated C60 thermal diffusion on the hexagonal boron-nitride (h-BN) monolayer as the wheel of nanocars. We calculated C60 potential energy variation during the translational and rotational motions at different points on the substrate. The study of the energy barriers and diffusion coefficients of the molecule at different temperatures indicated three noticeable changes in the C60 motion regime. C60 starts to slide on the surface at 30 K–40 K, slides freely on the boron-nitride monolayer at 100 K–150 K, and shows rolling motions at temperatures higher than 500 K. The anomaly parameter of the motion reveals that C60 has a diffusive motion on the boron-nitride substrate at low temperatures and experiences superdiffusion with Levy flight motions at higher temperatures. A comparison of the fullerene motion on the boron-nitride and graphene surfaces demonstrated that the analogous structure of the graphene and hexagonal boron-nitride led to similar characteristics such as anomaly parameters and the temperatures at which the motion regime changes. The results of this study empower us to predict that fullerene prefers to move on boron-nitride sections on a hybrid substrate composed of graphene and boron-nitride. This property can be utilized to design pathways or regions on a surface to steer or trap the C60 or other molecular machines, which is a step toward directional transportation at the molecular scale.
With the synthesis of nanocar structures the idea of transporting energy and payloads on the surface became closer to reality. To eliminate the concern of diffusive surface motion of nanocars, in this study, we evaluate the motion of C60 and C60-based nanovehicles on graphene and hexagonal boron-nitride (BN) surfaces using molecular dynamics simulations and potential energy analysis. Utilizing the graphene-hBN hybrid substrate, it has been indicated that C60 is more stable on boron-nitride impurity regions in the hybrid substrate and an energy barrier restricts the motion to the boron-nitride impurity. Increasing the temperature causes the molecule to overcome the energy barrier frequently. A nanoroad of boron-nitride with graphene sideways is designed to confine the surface motion of C60 and nanovehicles at 300 K. As expected, the motion of all surface molecules is limited to the boron-nitride nanoroads. Although the motion is restricted to the boron-nitride nanoroad, the diffusive motion is still noticeable in lateral directions. To obtain the unidirectional motion for C60 and nanocars on the surface, a temperature gradient is applied to the surface. The unidirectional transport to the nanoroad regions with a lower temperature occurs in a short period of time due to the lower energies of molecules on the colder parts.
Investigation of the nanomachines swarm motion is useful in the design of molecular transportation systems as well as in understanding the assembly process on the surface. Here, we evaluate the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.