The problem of cooperative optimal control of multiagent systems with linear periodic continuous-time dynamics is considered. The state consensus problem is formulated as an optimal control problem in which the consensus requirement is reflected in the cost. The cost optimization of each subsystem is considered over finite horizon while the states of the agents converge to a common value, with a control signal that depends on the interactions of the neighboring subsystems. The proposed control law consists of a local and regional terms to capture local measurements and measurements due to interactions with the neighboring agents, respectively. These two terms are obtained by solving a Hamilton-Jacobi-Bellman partial differential equation. A numerical example is presented to demonstrate the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.