Abstract-An universal remote powering and communication system is presented for the implantable medical devices. The system be interfaced with different sensors or actuators. A mobile external unit controls the operation of the implantable chip and reads the sensor's data. A locator system is proposed to align the mobile unit with the implant unit for the efficient magnetic power transfer. The location of the implant is detected with 6 mm resolution from the rectified voltage level at the implanted side. The rectified voltage level is fedback to the mobile unit to adjust the magnetic field strength and maximize the efficiency of the remote powering system. The sensor's data are transmitted by using a free running oscillator modulated with on-off key scheme. To tolerate large data carrier drifts, a custom designed receiver is implemented for the mobile unit. The circuits have been fabricated in 0.18 um CMOS technology. The remote powering link is optimized to deliver power at 13.56 MHz. On chip voltage regulator creates 1.8 V from a 0.9 V reference voltage to supply the sensor/actuator blocks. The implantable chip dissipates 595 W and requires 1.48 V for start up.Index Terms-CMOS analog circuit design, data communication, implantable biomedical system, implantable medical device, inductive link, integrated circuits, location detection, locator, power management, remote powering, wireless power transfer.
An implantable system for monitoring vital parameters via bio-sensors inside freely moving laboratory animals and its powering system are presented. The required 2 mW are harvested by the magnetic coupling with an external coil placed under the living space of the animal. The servo X-Y rails move the external coil and track the animal. Dynamic power-adaptation keeps the harvested power level constant against misalignments of transmitting coil and moving animal. Entire system and basic blocks integrated using a 0.18 um CMOS technology are presented. Experimental results show the effectiveness of the powering system.
Multiple techniques are presented to implement an ultra-low-power remotely powered implantable system. The temperature is monitored locally by a thermistor-type sensor. The resistive response of the sensor is amplified and resolved in the time-domain. The data is transmitted using a duty cycled free running oscillator operating at 868 MHz. In addition, the sensor interface and data transmitter are time interleaved to improve power link sensitivity. A prototype chip is fabricated in 0.18 μm CMOS. The implant is powered with a 13.56 MHz inductive link and operates with a minimum power of 53 μW. The system is capable of recording temperature with accuracy of ±0.09 • C when 8 times oversampling is done at the base station.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.