In this paper, we address resonant leaky-mode reflectors made with a periodic silicon layer on an insulating substrate. Our objective is to explain the physical basis for their operation and to quantify the bandwidth provided by a single resonant layer by illustrative examples for both TE and TM polarized incident light. We find that the number of participating leaky modes and their excitation conditions affect the bandwidth. We show that recently reported experimental [1, 2] wideband reflectors operate under leaky-mode resonance. These compact reflectors are new elements with many potential applications in photonic systems. The results presented explaining their physical basis will aid in their continued development.
Particle swarm optimization (PSO) is an evolutionary, easy-to-implement technique to design optical diffraction gratings. Design of reflection and transmission guided-mode resonance (GMR) grating filters using PSO is reported. The spectra of the designed filters are in good agreement with the design targets in a reasonable computation time. Also, filters are designed with a genetic algorithm (GA) and the results obtained by the GA and PSO are compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.