The dissipative particle dynamics (DPD) technique is a relatively new mesoscale technique which was initially developed to simulate hydrodynamic behavior in mesoscopic complex fluids. It is essentially a particle technique in which molecules are clustered into the said particles, and this coarse graining is a very important aspect of the DPD as it allows significant computational speed-up. This increased computational efficiency, coupled with the recent advent of high performance computing, has subsequently enabled researchers to numerically study a host of complex fluid applications at a refined level. In this review, we trace the developments of various important aspects of the DPD methodology since it was first proposed in the in the early 1990's. In addition, we review notable published works which employed DPD simulation for complex fluid applications.
SUMMARYA fully three-dimensional compressible inverse design method for the design of radial and mixed flow turbomachines is described. In this method the distribution of the circumferentially averaged swirl velocity r vo on the meridional geometry of the impeller is prescribed and the corresponding blade shape is computed iteratively. Two approaches are presented for solving the compressible flow problem. In the approximate approach the pitchwise variation in density is neglected and as a result the algorithm is simple and efficient. In the exact approach the velocities and density are computed throughout the three-dimensional flow field by employing a fast fourier transform in the tangential direction. The results of the approximate and exact approach are compared for the case of a high-speed (subsonic) radial-inflow turbine and it is shown that the difference between the blade shapes computed by the two methods is well within the manufacturing tolerances. The method was validated by calculating the flow through a designed high-speed radial-inflow turbine by using a three-dimensional inviscid Euler solver. Very good correlation was obtained between the specified and computed T V&distributions.
Automatic optimization techniques have been used in recent years for the aerodynamic and mechanical design of turbomachine components. Despite the many advantages, their use is usually limited to simple applications in industrial practice, because of their high computational cost. In this paper, an optimization strategy is presented, which enables the three-dimensional multipoint, multiobjective aerodynamic optimization of turbomachinery blades in a time frame compatible with industrial standards. The design strategy is based on the coupling of three-dimensional inverse design, response surface method, multiobjective evolutionary algorithms, and computational fluid dynamics analyses. The blade parametrization is performed by means of a three-dimensional inverse design method, where aerodynamic parameters, such as the blade loading, are used to describe the blade shape. Such a parametrization allows for a direct control of the aerodynamic flow field and performance, leading to a major advantage in the optimization process. The design method was applied to the redesign of a centrifugal and of an axial compressor stage. The two examples confirmed the validity of the design strategy to perform the three-dimensional optimization of turbomachine components, accounting for both design and off-design performance, in a time-efficient manner. The coupling of response functions and inverse design parametrization also allowed for an easy sensitivity analysis of the impact of the design parameters on the performance ones, contributing to the development of design guidelines that can be exploited for similar design applications.
The present paper describes the parametric design of a mixed-flow water-jet pump. The pump impeller and diffuser geometries were parameterized by means of an inverse design method, while CFD analyses were performed to assess the hydrodynamic and suction performance of the different design configurations that were investigated. An initial pump design was first generated and used as baseline for the parametric study. The effect of several design parameters was then analyzed in order to determine their effect on the pump performance. The use of a blade parameterization, based on inverse design, led to a major advantage in this study, because the three-dimensional blade shape is described by means of hydrodynamic parameters, such as blade loading, which has a direct impact on the hydrodynamic flow field. On the basis of this study, an optimal configuration was designed with the aim of maximizing the pump suction performance, while at the same time, guaranteeing a high level of hydrodynamic efficiency, together with the required mechanical and vibrational constraints. The final design was experimentally tested, and the good agreement between numerical predictions and experimental results validated the design process. This paper highlights the contrasting requirements in the pump design in order to achieve high hydrodynamic efficiency or good cavitation performance. The parametric study allowed us to determine design guidelines in order to find the optimal compromise in the pump design, in cases where both a high level of efficiency and suction performance must simultaneously be achieved. The design know-how developed in this study is based on flow field analyses and on hydrodynamic design parameters. It has therefore a general validity and can be used for similar design applications.
A new approach to optimizing a pump diffuser is presented, based on a three-dimensional inverse design method and a Computational Fluid Dynamics (CFD) technique. The blade shape of the diffuser was designed for a specified distribution of circulation and a given meridional geometry at a low specific speed of 0.109 (non-dimensional) or 280 (m3/min, m, rpm). To optimize the three-dimensional pressure fields and the secondary flow behavior inside the flow passage, the diffuser blade was more fore-loaded at the hub side as compared with the casing side. Numerical calculations, using a stage version of Dawes three-dimensional Navier-Stokes code, showed that such a loading distribution can suppress flow separation at the corner region between the hub and the blade suction surface, which was commonly observed with conventional designs having a compact bowl size (small outer diameter). The improvements in stage efficiency were confirmed experimentally over the corresponding conventional pump stage. The application of multi-color oil-film flow visualization confirmed that the large area of the corner separation was completely eliminated in the inverse design diffuser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.