Diffuse optical tomography (DOT) and photoacoustic tomography (PAT) are functional imaging modalities that provide absorption coefficient maps of the tissue. Spatial resolution of DOT is relatively low due to light scattering characteristics of the tissue. On the other hand, although PAT can resolve regions of different absorptions with a high spatial resolution, measuring the absolute value of optical absorptions using PAT is challenging due to unknown light fluence distribution in the tissue. Development of image guidance techniques using a priori information of imaging target structure has been shown to increase the accuracy of DOT. PAT is one such method that can be used as a complementary modality to serve as a guide for DOT image reconstruction. On the other hand, estimated fluence map provided by DOT can be used to quantitatively correct PAT images. In this study we introduce a mutually-guided imaging system for fast and simultaneous optical and photoacoustic measurements of tissue absorption map, where DOT is guided by the PAT image and vice versa. Using the obtained absorption map of the tissue, we then estimate the tissue scattering map. We conducted this study using a series of simulations on digital phantoms and demonstrated the effectiveness of the proposed method.
Introduction: Functional near-infrared spectroscopy (fNIRS) has been broadly applied for optical brain imaging. This method is hemodynamic-based functional brain imaging relying on the measurement of the neurovascular coupling to detect changes in cerebral neuronal activities. The extra-cerebral hemodynamic changes are important contaminating factors in fNIRS measurements. This error signal can be misinterpreted as cerebral activities during fNIRS studies. Recently, it was assumed that temporal changes in deoxygenated hemoglobin concentration [HHb] was hardly affected by superficial blood flow, and it was proposed that the activation maps could be determined from [HHb] at large source-detector separation. Methods: In the current study, we measured the temporal changes in [HHb] using a continueswave fNIRS device at large source-detector separation, while superficial blood flow was stimulated by infrared lasers. A mesh-based Monte Carlo code was applied to estimate fNIRS sensitivity to superficial hemodynamic changes in a realistic 3D MRI-based brain phantom. Results: First, we simulated photon migration in a four-layered human-head slab model to calculate PPLs and fNIRS sensitivity. Then, the localization of the infrared laser inside a realistic brain model was studied using the Monte Carlo method. Finally, the changes in [HHb] over the prefrontal cortex of six adult males were measured by fNIRS at a source-detector separation of 3 cm. The results demonstrated that the relation between fNIRS sensitivity and an increase in S-D separation was nonlinear and a correlation between shallow and deep signals was observed. Conclusion: The presented results demonstrated that the temporal changes in the superficial blood flow could strongly affect HHb measurement at large source-detector separation. Hence, the cerebral activity map extracted from the [HHb] signal was mainly contaminated by superficial blood flow.
Thermoacoustic tomography is an emerging medical imaging technique combining the benefits of microwave imaging and ultrasound. This imaging method has a great potential to be used for breast cancer screening due to detecting early-stage breast cancer with high contrast and high resolution. It has been proven that applying a special regime of microwave pulses can evoke the resonance phenomenon in thermoacoustic. Here, the parameters affecting the intensity of the acoustic signal and the resonance phenomenon are examined. Then, a breast tumor detection technique is proposed based on utilizing the resonance phenomenon and the relationship between sample size and resonance bandwidth. The location of the tumor is also estimated by an explicit method. This technique eliminates the need for image reconstruction. In this method, the size and location of the tumor can be obtained using only three acoustic transducers. Finally, the precision of this method is compared with the time-reversal image reconstruction algorithm. The results demonstrate the feasibility of a safe, fast, and low-cost thermoacoustic detection method for skin and breast cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.