The need for regional-scale integrated hydrological models for the purpose of water resource management is increasing. Distributed physically based coupled surface-subsurface models are usually complex and contain a large amount of spatiotemporal information that leads to a relatively long forward runtime. One of the main challenges with regard to regional-scale inverse modeling relates to parameterization and how to adequately exploit the information embedded in the existing observational data while avoiding parameter identifiability issues. This study examined and compared the calibration of a Bhighly parameterized^model with a Bclassical^unit-based parameterization scheme in which the dominant geological features were assumed to be known. The physically based coupled surface-subsurface model MIKE SHE was used for conducting the study of five river basins (4,900 km 2) in central Jutland in Denmark, characterized by heterogeneous geology and a considerable amount of groundwater flux across topographical catchment boundaries. The results indicated that introducing more flexibility in the parameter estimation process through a regularized approach significantly improved the model performance, in particular head and water balance errors. The highly parameterized calibration results additionally provided very useful insights into the model deficiencies in terms of conceptual model structure and incorrectly imposed boundary conditions. Furthermore, the results from data-worth analysis indicated that the highly parameterized model has more effectively utilized the information in the dataset compared to a traditional unit-based calibration approach.
Due to increasing water demands globally, freshwater ecosystems are under constant pressure. Groundwater resources, as the main source of accessible freshwater, are crucially important for irrigation worldwide. Over-abstraction of groundwater leads to declines in groundwater levels; consequently, the groundwater inflow to streams decreases. The reduction in baseflow and alteration of the streamflow regime can potentially have an adverse effect on groundwater-dependent ecosystems. A spatially distributed, coupled groundwater-surface water model can simulate the impacts of groundwater abstraction on aquatic ecosystems. A constrained optimization algorithm and a simulation model in combination can provide an objective tool for the water practitioner to evaluate the interplay between economic benefits of groundwater abstractions and requirements to environmental flow. In this study, a holistic catchment-scale groundwater abstraction optimization framework has been developed that allows for a spatially explicit optimization of groundwater abstraction, while fulfilling a predefined maximum allowed reduction of streamflow (baseflow [Q95] or median flow [Q50]) as constraint criteria for 1484 stream locations across the catchment. A balanced K-Means clustering method was implemented to reduce the computational burden of the optimization. The model parameters and observation uncertainties calculated based on Bayesian linear theory allow for a risk assessment on the optimized groundwater abstraction values. The results from different optimization scenarios indicated that using the linear programming optimization algorithm in conjunction with integrated models provides valuable information for guiding the water practitioners in designing an effective groundwater abstraction plan with the consideration of environmental flow criteria important for the ecological status of the entire system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.