Recent successes in treating genetic immunodeficiencies have demonstrated the therapeutic potential of stem cell gene therapy. However, the use of gammaretroviral vectors in these trials led to insertional activation of nearby oncogenes and leukemias in some study subjects, prompting studies of modified or alternative vector systems. Here we describe the use of foamy virus vectors to treat canine leukocyte adhesion deficiency (CLAD). Four of five dogs with CLAD that received nonmyeloablative conditioning and infusion of autologous, CD34+ hematopoietic stem cells transduced by a foamy virus vector expressing canine CD18 had complete reversal of the CLAD phenotype, which was sustained more than 2 years after infusion. In vitro assays showed correction of the lymphocyte proliferation and neutrophil adhesion defects that characterize CLAD. There were no genotoxic complications, and integration site analysis showed polyclonality of transduced cells and a decreased risk of integration near oncogenes as compared to gammaretroviral vectors. These results represent the first successful use of a foamy virus vector to treat a genetic disease, to our knowledge, and suggest that foamy virus vectors will be effective in treating human hematopoietic diseases.
Primary and immortalized cultured Schwann cells are commonly utilized in analyses of myelin gene promoters, but few lines are well-characterized in terms of their endogenous expression of myelin genes. This is particularly significant in that cultured Schwann cells typically do not express myelin genes at levels comparable to those observed in vivo. In this study, the steady-state levels of mRNA and protein for five Schwann cell markers (PMP22, P0, MBP, MAG, and LNGF-R) were assessed in primary Schwann cells and six representative Schwann cell lines (RT4-D6P2T, JS-1, RSC96, R3, S16, and S16Y). RT4-D6P2T and S16 cells were the most similar to myelinating Schwann cells based on their comparatively high expression of PMP22 and P0 mRNA. Both RT4-D6P2T and S16 also expressed P0 protein. In addition, the previously reported P1-A positive regulatory region from the myelination-specific PMP22 promoter demonstrated significant activity in both these cell lines. However, nuclear proteins that interacted with P1-A were different in extracts prepared from RT4-D6P2T and S16 cells. Primary Schwann cells expressed myelin proteins at levels that were equal or less than those observed with the RT4-D6P2T and S16 lines, indicating that primary Schwann cells are not necessarily better than immortalized Schwann cells as model systems for the study of myelin gene regulation. The data presented here demonstrate that cultured Schwann cells used to study myelin gene promoters have to be carefully selected on the basis of the endogenous level of expression of the myelin gene under study.
We describe the molecular analysis of three families with hypodontia involving primarily molar teeth and report two novel mutational mechanisms. Linkage analysis of two large families revealed that the hypodontia was linked to the PAX9 locus. These two families revealed missense mutations consisting of a glutamic acid substitution for lysine and a proline substitution for leucine within the paired domain of PAX9. A pair of identical twins affected with hypodontia in a third family demonstrated a 288-bp insertion within exon 2 that resulted in a putative frameshift mutation and a premature stop codon. The insertion was associated with the loss of 7-bp from exon 2. A block of 256-bp of sequence within the insertion was completely identical to downstream sequence from the second intron of the PAX9 gene. These studies extend the spectrum of mutations in PAX9 associated with hypodontia to include heretofore undescribed categories, including missense mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.