Essential oils were obtained by steam distillation from berries of Schinus molle L. and Schinus terebinthifolius Raddi originating from southern of Tunisia and analyzed by GC-FID and GC-MS. Among 57 and 62 compounds (%[mg/100 g dry matter]) identified in these oils, the main were alpha-phellandrene (46.52%[1256.15] and 34.38%[859.60]), beta-phellandrene (20.81%[561.74] and 10.61%[265.15]), alpha-terpineol (8.38%[226.26] and 5.60%[140.03]), alpha-pinene (4.34%[117.29] and 6.49%[162.25]), beta-pinene (4.96%[133.81] and 3.09%[77.30]) and p-cymene (2.49%[67.28] and 7.34%[183.40]), respectively. A marked quantity of gamma-cadinene (18.04%[451.05]) was also identified in the S. terebinthifolius essential oil whereas only traces (0.07%[1.81]) were detected in the essential oil of S. molle. The in vitro antioxidant and antiradical scavenging properties of the investigated essential oils were evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Essential oil of S. terebinthifolius expressed stronger antioxidant activity in the ABTS assay, with an IC(50) of 24 +/- 0.8 mg/L, compared to S. molle (IC(50)= 257 +/- 10.3 mg/L). Essential oils were also evaluated for their anticancer activities against human breast cancer cells (MCF-7). S. terebinthifolius essential oil was more effective against tested cell lines (IC(50)= 47 +/- 9 mg/L) than that from S. molle (IC(50)= 54 +/- 10 mg/L). Suggestions on relationships between chemical composition and biological activities are outlined.
The study was aimed to investigate essential oil chemical composition (gas chromatography/flame ionization detection [GC-FID] and gas chromatography/mass spectrometry [GC-MS]) and antioxidant (1,1-diphenyl-2-picrylhydrazyl free radical (DPPH) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulphonate [ABTS] assays) and antimicrobial (Gram-positive and Gram-negative bacteria, fungi, and yeast) activities of essential oils extracted from leaves of Mentha longifolia L. and Mentha viridis. GC-MS analysis revealed that M. longifolia was constituted by pulegone (54.41%) as a major component followed by isomenthone (12.02%), 1,8-cineole (7.41%), borneol (6.85%), and piperitenone oxide (3.19%). M. viridis was rich in carvone (50.47%), 1,8-cineole (9.14%), and limonene (4.87%). The antioxidant activity by ABTS assay showed IC(50) values of 476.3 +/- 11.7 and 195.1 +/- 4.2 mg/L for M. longifolia and M. viridis, respectively, the DPPH assays have resulted in a moderate IC(50) (>8000 mg/L and 3476.3 +/- 133 mg/L for M. longifolia and M. viridis, respectively). Antimicrobial activity showed that Listeria monocytogenes and Klebsiella pneumoniae bacteria were more inhibited by the 2 essential oils tested. Escherichia coli was least susceptible. A strong activity was also observed on fungi and yeasts. Carvone, thymol, and piperitone oxide have not been detected in Tunisian M. longifolia. Camphor is reported for the 1st time for M. viridis. Antioxidant and antibacterial activities were correlated to chemical composition.
Essential oils obtained by hydrodistillation from the different parts (stems, adult leaves, immature flowers and fruits) of Eucalyptus oleosa were screened for their antioxidant and antimicrobial properties and their chemical composition. According to GC-FID and GC-MS, the principal compound of the stem, immature flowers and the fruit oils was 1,8-cineole, representing 31.5%, 47.0% and 29.1%, respectively. Spathulenol (16.1%) and γ-eudesmol (15.0%) were the two principal compounds of adult leaves oil. In the DPPH (1,1-diphenyl-2-picrylhydrazyl) assay, the oils of the four parts showed moderate antioxidant activity. In the ABTS (2,2'-azinobis-3-ethylbenzothiazoline-6-sulphonate) assay, the most active part was the adult leaves, with a IC 50 value 13.0 ± 0.6 mg/L, followed by stems (IC 50 = 43.5 ± 1.4 mg/L). The essential oils showed a better antibacterial activity against Gram-positive and Gram-negative bacteria, and a significant antifungal
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.