The biosynthesis of taxol (paclitaxel) and related taxoids in Pacific yew (Taxus brevifolia) is thought to involve the cyclization of geranylgeranyl diphosphate to a taxadiene followed by extensive oxygenation of this diterpene olefin intermediate. A cell-free preparation from sapling yew stems catalyzed the conversion of [1-3H]geranylgeranyl diphosphate to a cyclic diterpene olefin that, when incubated with stem sections, was converted in good radiochemical yield to several highly functionalized taxanes, including 10-deacetyl baccatin III and taxol itself. Addition of the labeled olefin to a yew bark extract, followed by radiochemically guided fractionation, provided sufficient product to establish the structure as taxa-4(5),11(12)-diene by two-dimensional NMR spectroscopic methods. Therefore, the first dedicated step in taxol biosynthesis is the conversion of the universal diterpenoid precursor geranylgeranyl diphosphate to taxa-4(5),11(12)-diene, rather than to the 4(20),11(12)-diene isomer previously suggested on the basis of the abundance of taxoids with double bonds in these positions. The very common occurrence of taxane derivatives bearing the 4(20)-ene-5-oxy functional grouping, and the lack of oxygenated derivatives bearing a 4(5)-double bond, suggest that hydroxylation at C-5 of taxadiene with allylic rearrangement of the double bond is an early step in the conversion of this olefin intermediate to taxol.
The first committed step in the formation of taxol has been shown to involve the cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene. The formation of this endocyclic diterpene olefin isomer as the precursor of taxol was unexpected, since the exocyclic isomer, taxa-4(20),11(12)-diene, had been predicted as the initial product of the taxol pathway on the basis of metabolite co-occurrence. [1-2H2,20-2H3] and [20-2H3]geranylgeranyl diphosphates were employed as substrates with the partially purified taxadiene synthase from Pacific yew (Taxus brevifolia) stems to examine the possibility of a preliminary cyclization to taxa-4(20),11(12)-diene followed by isomerization to the more stable endocyclic double bond isomer. GLC-MS analysis of the derived taxa-4(5),11(12)-diene, via selected ion monitoring of the parent ion and the P-15 and C-ring fragment ions, compared to those of unlabeled standard, showed the olefin product to possess a deuterium enrichment essentially identical to that of the acyclic precursor, thus ruling out the putative isomerization step. With [4-2H2]geranylgeranyl diphosphate as substrate, similar product analysis established the enzymatically derived taxa-4(5),11(12)-diene to contain only one deuterium atom, consistent with direct formation from a taxenyl cation by deprotonation at C5. (+/-)-Casbene, (+/-)-verticillene, and (+/-)-taxa-4(20),11(12)-diene were tested as possible olefinic intermediates in taxa-4(5),11(12)-diene formation by a series of inhibition, trapping, and direct conversion experiments; no evidence was obtained that these exogenous olefins could serve as intermediates of the cyclization reaction. However, GLC-MS analysis of the taxadiene product derived by enzymatic cyclization of [1-3H]geranylgeranyl diphosphate in 2H2O indicated little incorporation of deuterium from the medium and suggested a rapid internal proton transfer in a tightly bound olefinic intermediate. Analysis of the enzymatic product generated from [10-2H1]geranylgeranyl diphosphate confirmed the intramolecular hydrogen transfer from C11 of a verticillyl intermediate to the C-ring of taxa-4(5),11(12)-diene. From these results, a stereochemical mechanism is proposed for the taxadiene synthase reaction involving the initial cyclization of geranylgeranyl diphosphate to a transient verticillyl cation intermediate, with transfer of the C11 alpha-proton to C7 to initiate transannular B/C-ring closure to the taxenyl cation, followed by deprotonation at C5 to yield the taxa-4(5),11(12)-diene product directly.
The novel diterpenoid taxol (paclitaxel) is now wellestablished as a potent chemotherapeutic agent. Total synthesis of the drug is not commercially feasible and, in the foreseeable future, the supply of taxol and its synthetically useful progenitors must rely on biological methods of production. The first three steps of taxol biosynthesis have been defined and the responsible enzymes described. These are the cyclization of the universal diterpenoid precursor geranylgeranyl diphosphate to taxa-4(5),11(12)-diene, the cytochrome P450-catalyzed hydroxylation of this olefin to taxa-4(20),11(12)-dien-5a-oI, and the acetyl CoA-dependent conversion of the alcohol to the corresponding acetate ester. Demonstration of these early steps of taxol biosynthesis suggests that the complete pathway can be defined by a systematic, stepwise approach at the cell-free enzyme level. When combined with in vivo studies to determine contribution to pathway flux, slow steps can be targeted for gene isolation and subsequent overexpression in Taxus to improve the yield of taxol and related compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.