In an attempt to reduce the infection rate of the COrona VIrus Disease-19 (Covid-19) countries around the world have echoed the exigency for an economical, accessible, point-of-need diagnostic test to identify Covid-19 carriers so that they (individuals who test positive) can be advised to self isolate rather than the entire community. Availability of a quick turnaround time diagnostic test would essentially mean that life, in general, can return to normality-at-large. In this regards, studies concurrent in time with ours have investigated different respiratory sounds, including cough, to recognise potential Covid-19 carriers. However, these studies lack clinical control and rely on Internet users confirming their test results in a web questionnaire (crowdsourcing) thus rendering their analysis inadequate. We seek to evaluate the detection performance of a primary screening tool of Covid-19 solely based on the cough sound from 8,380 clinically validated samples with laboratory molecular-test (2,339 Covid-19 positive and 6,041 Covid-19 negative) under quantitative RT-PCR (qRT-PCR) from certified laboratories. All collected samples were clinically labelled, i.e. Covid-19 positive or negative, according to the results in addition to the disease severity based on the qRT-PCR threshold cycle (Ct) and lymphocytes count from the patients. Our proposed generic method is an algorithm based on Empirical Mode Decomposition (EMD) for cough sound detection with subsequent classification based on a tensor of audio sonographs and deep artificial neural network classifier with convolutional layers called 'DeepCough'. Two different versions of DeepCough based on the number of tensor dimensions, i.e. DeepCough2D and DeepCough3D, have been investigated. These methods have been deployed in a multi-platform prototype web-app 'CoughDetect'.Covid-19 recognition results rates achieved a promising AUC (Area Under Curve) of 98.80% ± 0.83%, sensitivity of 96.43% ± 1.85%, and specificity of 96.20% ± 1.74% and average AUC of 81.08% ± 5.05% for the recognition of three severity levels. Our proposed web tool as a pointof-need primary diagnostic test for Covid-19 facilitates the rapid detection of the infection. We believe it has the potential to significantly hamper the Covid-19 pandemic across the world.
The ubiquity of web applications has led to an increased focus on the development of attacks targeting these applications. One particular type of attack that has recently become prominent is the SQL injection attack. SQL injection attacks can potentially result in unauthorized access to confidential information stored in a backend database. In this paper we describe an anomaly based approach which utilizes the character distribution of certain sections of HTTP requests to detect previously unseen SQL injection attacks. Our approach requires no user interaction, and no modification of, or access to, either the backend database or the source code of the web application itself. Our practical results suggest that the model proposed in this paper is superior to existing models at detecting SQL injection attacks. We also evaluate the effectiveness of our model at detecting different types of SQL injection attacks.
Effective connectivity (EC) amongst functional near-infrared spectroscopy (fNIRS) signals is a quantitative measure of the strength of influence between brain activity associated with different regions of the brain. Evidently, accurate deciphering of EC gives further insight into the understanding of the intricately complex nature of neuronal interactions in the human brain. This work presents a novel approach to estimate EC in the human brain signals using enhanced fuzzy cognitive maps (FCMs). The proposed method presents a regularized methodology of FCMs, called effective FCMs (E-FCMs), with improved accuracy for predicting EC between real, and synthetic fNIRS signals. Essentially, the revisions made in the FCM methodology include a more powerful prediction formula for FCM combined with independent tuning of the transformation function parameter. A comparison of EC in fNIRS signals obtained from E-FCM with that obtained from standard FCM, general linear model (GLM) parameters that power Dynamic Causal Modelling (DCM), and Granger Causality (GC) manifests the greater prowess of the proposed E-FCM over the aforementioned methods. For real fNIRS data, an empirical investigation is also made to gain an insight into the role of oxyhemoglobin and deoxyhemoglobin (oxy-Hb, deoxy-Hb) in representing the cognitive activity. We believe this work has profound implications for neuroergonomics research communities.
We seek to evaluate the detection performance of a rapid primary screening tool of Covid-19 solely based on the cough sound from 8,380 clinically validated samples with laboratory molecular-test (2,339 Covid-19 positive and 6,041 Covid-19 negative). Samples were clinically labelled according to the results and severity based on quantitative RT-PCR (qRT-PCR) analysis, cycle threshold and lymphocytes count from the patients. Our proposed generic method is a algorithm based on Empirical Mode Decomposition (EMD) with subsequent classification based on a tensor of audio features and deep artificial neural network classifier with convolutional layers called DeepCough'. Two different versions of DeepCough based on the number of tensor dimensions, i.e. DeepCough2D and DeepCough3D, have been investigated. These methods have been deployed in a multi-platform proof-of-concept Web App CoughDetect to administer this test anonymously. Covid-19 recognition results rates achieved a promising AUC (Area Under Curve) of 98.800.83%, sensitivity of 96.431.85%, and specificity of 96.201.74%, and 81.08%5.05% AUC for the recognition of three severity levels. Our proposed web tool and underpinning algorithm for the robust, fast, point-of-need identification of Covid-19 facilitates the rapid detection of the infection. We believe that it has the potential to significantly hamper the Covid-19 pandemic across the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.