With the increasing popularity of streaming tensor data such as videos and audios, tensor factorization and completion have attracted much attention recently in this area. Existing work usually assume that streaming tensors only grow in one mode. However, in many real-world scenarios, tensors may grow in multiple modes (or dimensions), i.e., multi-aspect streaming tensors. Standard streaming methods cannot directly handle this type of data elegantly. Moreover, due to inevitable system errors, data may be contaminated by outliers, which cause significant deviations from real data values and make such research particularly challenging. In this paper, we propose a novel method for Outlier-Robust Multi-Aspect Streaming Tensor Completion and Factorization (OR-MSTC), which is a technique capable of dealing with missing values and outliers in multi-aspect streaming tensor data. The key idea is to decompose the tensor structure into an underlying low-rank clean tensor and a structured-sparse error (outlier) tensor, along with a weighting tensor to mask missing data. We also develop an efficient algorithm to solve the non-convex and non-smooth optimization problem of OR-MSTC. Experimental results on various real-world datasets show the superiority of the proposed method over the baselines and its robustness against outliers.
Object-Z is an extension of the Z notation which facilitates specification of large, complex software by defining a system as a collection of independent classes. A number of contributions have been made so far to map Object-Z to various object-oriented languages. However, the given mapping approaches do not cover several Object-Z specification constructs, such as class union, object aggregation, object containment and some of the operation operators. Also, in much of the existing work, mapping rules are given in a very abstract form. In other words, they do not consider all cases in a detailed way needed to automate the mapping procedure. In our previous work, we partially tackled these issues; however, in this paper, we present a much more comprehensive way to animate Object-Z specifications using C++. The given method covers some constructs that have not been addressed in our previous work. Also, mapping rules are described with enough details facilitating automation. Finally, we consider some level of user interaction in our new method which increases the flexibility and efficiency of final codes from the user point of view.
In the era of big data, data may come from multiple sources, known as multi-view data. Multi-view clustering aims at generating better clusters by exploiting complementary and consistent information from multiple views rather than relying on the individual view. Due to inevitable system errors caused by data-captured sensors or others, the data in each view may be erroneous. Various types of errors behave differently and inconsistently in each view. More precisely, error could exhibit as noise and corruptions in reality. Unfortunately, none of the existing multi-view clustering approaches handle all of these error types. Consequently, their clustering performance is dramatically degraded. In this paper, we propose a novel Markov chain method for Error-Robust Multi-View Clustering (EMVC). By decomposing each view into a shared transition probability matrix and error matrix and imposing structured sparsity-inducing norms on error matrices, we characterize and handle typical types of errors explicitly. To solve the challenging optimization problem, we propose a new efficient algorithm based on Augmented Lagrangian Multipliers and prove its convergence rigorously. Experimental results on various synthetic and real-world datasets show the superiority of the proposed EMVC method over the baseline methods and its robustness against different types of errors.
Graph convolutional neural networks (GCNs) generalize tradition convolutional neural networks (CNNs) from low-dimensional regular graphs (e.g., image) to high dimensional irregular graphs (e.g., text documents on word embeddings). Due to inevitable faulty data collection instruments, deceptive data manipulation, or other system errors, the data might be error-contaminated. Even a small amount of error such as noise can compromise the ability of GCNs and render them inadmissible to a large extent. The key challenge is how to effectively and efficiently employ GCNs in the presence of erroneous data. In this paper, we propose a novel Robust Graph Convolutional Neural Networks for possible erroneous single-view or multi-view data where data may come from multiple sources. By incorporating an extra layers via Autoencoders into traditional graph convolutional networks, we characterize and handle typical error models explicitly. Experimental results on various real-world datasets demonstrate the superiority of the proposed model over the baseline methods and its robustness against different types of error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.