Forecasting of geopolitical events is a notoriously difficult task, with experts failing to significantly outperform a random baseline across many types of forecasting events. One successful way to increase the performance of forecasting tasks is to turn to crowdsourcing: leveraging many forecasts from non-expert users. Simultaneously, advances in machine learning have led to models that can produce reasonable, although not perfect, forecasts for many tasks. Recent efforts have shown that forecasts can be further improved by "hybridizing" human forecasters: pairing them with the machine models in an effort to combine the unique advantages of both. In this demonstration, we present Synergistic Anticipation of Geopolitical Events (SAGE), a platform for human/computer interaction that facilitates human reasoning with machine models.
Interest surrounding cryptocurrencies, digital or virtual currencies that are used as a medium for financial transactions, has grown tremendously in recent years. The anonymity surrounding these currencies makes investors particularly susceptible to fraud-such as "pump and dump" scams-where the goal is to artificially inflate the perceived worth of a currency, luring victims into investing before the scammers can sell their holdings. Because of the speed and relative anonymity offered by social platforms such as Twitter and Telegram, social media has become a preferred platform for scammers who wish to spread false hype about the cryptocurrency they are trying to pump. In this work we propose and evaluate a computational approach that can automatically identify pump and dump scams as they unfold by combining information across social media platforms. We also develop a multi-modal approach for predicting whether a particular pump attempt will succeed or not. Finally, we analyze the prevalence of bots in cryptocurrency related tweets, and observe a significant significant presence of bots during the pump attempts.
KEYWORDScryptocurrency, pump and dump, social media data mining, anomaly detection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.