Testicular torsion-detorsion results in enhanced formation of free radicals which contribute to the pathophysiology of testicular tissue damage. Recent reports have identified protective role of pentoxifylline (PTX) against free radicals. Thus, we determined the protective effect of pentoxifylline against testicular damage in mouse model of testicular torsion-detorsion.
Twenty (6 weeks old) male mice were divided into 4 groups of 5 animals each namely: Control (sham operated group), T1 (Torsion-detosion + single dose 100 mg/kg PTX, T2 (torsion-detorsion + 20 mg/kg PTX for 2 weeks and T/D (torsion-detorsion only). Animals in T1, T2 and T/D groups underwent 2 h of testicular torsion with the left testes rotated 720° (clockwisely) followed by 30 min of detorsion. After detorsion, drug administration was done intraperitoneally. The left testes of all the animals were excised on the 35th day after torsion-detortion for histopathological and biochemical assay. Histomorphological analysis of the seminiferous tubules showed that there were significant increase (P < 0.01 or 0.05) in the mean seminiferous tubule diameter, Johnson score and germ cells of animals in Control and T1 compared to T2 and T/D with no significant difference (P > 0.05) in testes weight, sertoli, leydig and myoid cells in all groups. IHC results showed significant increase (P < 0.01 or 0.05) in id4 and scp3 protein markers in Control, T1 and T2 compared to T/D. Oxidative stress analysis revealed that Pentoxifylline significantly increased (P < 0.01 or 0.05) the level of SOD, catalase, mRNA expression of akt and pi3k genes but significantly suppress (P < 0.01 or 0.05) MDA and Caspase-3 level in Control, T1 and T2 compared to T/D. Pentoxifylline could be used as an adjunct therapy to surgery in the treatment of torsion-detorsion related testicular injury, However, Further studies are needed to evaluate the effects of pentoxifylline on testicular torsion.
BackgroundPreserving the spermatogonial stem cells (SSCs) in long periods of time during the treatment of male infertility using stem cell banking systems and transplantation is an important issue. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using 10 mM pentoxifylline (PTX) as an antioxidant in basal freezing medium.
MethodsTesticular torsion -a mouse model for long-term infertility-was used to transplant fresh SSCs (n=6), fresh SSCs treated with PTX (n=6), cryopreserved SSCs with basal freezing medium (n=6) and cryopreserved SSCs treated with PTX (n=6). Eight weeks after germ cell transplantation, samples were assessed for proliferation, through evaluation of Ddx4 and Id4 markers, and differentiation via evaluation of C-Kit and Sycp3, Tnp1, Tnp2, and Prm1 markers.
ResultsAccording to morphological and ow cytometry results, SSCs are able to form colonies and express Gfra1, ID4, α6-integrin and β1-integrin markers. We found positive in uence from PTX on proliferative and differentiative markers in SSCs transplanted to azoospermic mice. In the recipient testis, donor SSCs formed spermatogenic colonies and sperm.
ConclusionRespecting these data, adding pentoxifylline is a practical way to precisely cryopreserve germ cells enriched for SSCs in cryopreservation, and this procedure could become an e cient method to restore fertility in a clinical setup. However, more studies are needed to ensure its safety in the long term.
Background:Angiogenesis plays a major role in endometrial receptivity and thickening of the endometrium immediately before implantation. The aim of the present work was to evaluate the antiangiogenic properties of epigallocatechin-3-gallate (EGCG) from green tea in angiogenesis of endometrium.Materials and Methods:In this study, forty adult female NMARI mice randomly divided into four groups. Control group received vehicle; human menopausal gonadotropin/human chorionic gonadotropin (HMG/HCG) group received 7.5 IU HMG intraperitoneal (IP) and 48 h later 7.5 IU HCG was injected (IP) for ovarian stimulation; HMG/HCG + EGCG group received HMG and HCG in the same manner as the previous group and also received 5 mg/kg EGCG at 0, 24, 48, and 72 h after injection of HMG; and the group EGCG received 5 mg/kg EGCG. A male mouse was kept with two female animals in the same cage for mating. Mice were dissected 96 h after administration of HMG (immediately before implantation) and tissue processing was carried out for the uterine specimens. CD31-positive cells were counted by use of histological and immunohistochemical methods.Results:Angiogenesis in EGCG-treated group was less than that of control and gonadotropin group (P < 0.05). The number of endothelial cells was counted by CD31 marker under a light microscope and showed significant differences between all groups (P < 0.05).Conclusion:EGCG significantly inhibited the angiogenesis in endometrium (in natural cycles) through antiangiogenic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.