Clustering has become an increasingly important and highly complicated research area for targeting useful and relevant information in modern application domains such as the World Wide Web. Recent studies have shown that the most commonly used partitioning-based clustering algorithm, the K-means algorithm, is more suitable for large datasets. However, the K-means algorithm may generate a local optimal clustering. In this paper, we present novel document clustering algorithms based on the Harmony Search (HS) optimization method. By modeling clustering as an optimization problem, we first propose a pure HS based clustering algorithm that finds near-optimal clusters within a reasonable time. Then, harmony clustering is integrated with the K-means algorithm in three ways to achieve better clustering by combining the explorative power of HS with the refining power of the K-means. Contrary to the localized searching property of K-means algorithm, the proposed algorithms perform a globalized search in the entire solution space. Additionally, the proposed algorithms improve K-means by making it less dependent on the initial parameters such as randomly chosen initial cluster centers, therefore, making it more stable. The behavior of the proposed algorithm is theoretically analyzed by modeling its population variance as a Markov chain. We also conduct an empirical study to determine the impacts of various parameters on the quality of clusters and convergence behavior of the algorithms. In the experiments, we apply the proposed algorithms along with K-means and a Genetic Algorithm (GA) based clustering algorithm on five different document datasets. Experimental results reveal that the proposed algorithms can find better clusters and the quality of clusters is comparable based on F-measure, Entropy, Purity, and Average Distance of Documents to the Cluster Centroid (ADDC).
In recent years there have been some efforts to automate the ontology acquisition and construction process. The proposed systems differ from each other in some factors and have many features in common. This paper presents the state of the art in Ontology Learning (OL) and introduces a framework for classifying and comparing OL systems. The dimensions of the framework concern what to learn, from where to learn it and how it may be learnt. They include features of the input, the methods of learning and knowledge acquisition, the elements learned, the resulting ontology and also the evaluation process. To extract this framework, over 50 OL systems or modules thereof that have been described in recent articles are studied here and seven prominent ones, which illustrate the greatest differences, are selected for analysis according to our framework. In this paper after a brief description of the seven selected systems we describe the dimensions of the framework. Then we place the representative ontology learning systems into our framework. Finally, we describe the differences, strengths and weaknesses of various values for our dimensions in order to present a guideline for researchers to choose the appropriate features to create or use an OL system for their own domain or application.
With the advent of online social networks, recommender systems have became crucial for the success of many online applications/services due to their significance role in tailoring these applications to user-specific needs or preferences. Despite their increasing popularity, in general, recommender systems suffer from data sparsity and cold-start problems. To alleviate these issues, in recent years, there has been an upsurge of interest in exploiting social information such as trust relations among users along with the rating data to improve the performance of recommender systems. The main motivation for exploiting trust information in the recommendation process stems from the observation that the ideas we are exposed to and the choices we make are significantly influenced by our social context. However, in large user communities, in addition to trust relations, distrust relations also exist between users. For instance, in Epinions, the concepts of personal "web of trust" and personal "block list" allow users to categorize their friends based on the quality of reviews into trusted and distrusted friends, respectively. Hence, it will be interesting to incorporate this new source of information in recommendation as well. In contrast to the incorporation of trust information in recommendation which is thriving, the potential of explicitly incorporating distrust relations is almost unexplored. In this article, we propose a matrix factorization-based model for recommendation in social rating networks that properly incorporates both trust and distrust relationships aiming to improve the quality of recommendations and mitigate the data sparsity and cold-start users issues. Through experiments on the Epinions dataset, we show that our new algorithm outperforms its standard trust-enhanced or distrustenhanced counterparts with respect to accuracy, thereby demonstrating the positive effect that incorporation of explicit distrust information can have on recommender systems. ACM Reference Format:Rana Forsati, Mehrdad Mahdavi, Mehrnoush Shamsfard, and Mohamed Sarwat. 2014. Matrix factorization with explicit trust and distrust side information for improved social recommendation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.