The heart is an organ with a limited capacity for regeneration and repair. In this paper, a new mathematical model is presented to study the left ventricular remodeling after myocardial infarction (MI) and followed stem cell therapeutic effort. The model represents the post-MI regeneration process of cardiomyocytes under stem cell therapy with oxygen restoration. The resulting system of nonlinear ordinary differential equations (ODE) is studied numerically in order to demonstrate the functionality and performance of the new model. The optimal time of stem cell injection for various oxygen restorations is determined. Moreover, the regeneration of cardiomyocytes is successfully correlated with improved left ventricle function observed in experiments. The proposed nonlinear ODE model is able to capture the complicated biological interactions in post-MI remodeling and can serve as a platform for in silico simulation and perturbation to optimize MI stem cell therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.