Scientific problems can be formulated as workflows to allow them to take advantage of cluster computing resources. Generally, the assumption is that the greater the resources dedicated to completing these tasks the better. This assumption does not take into account the energy cost of performing the computation and the specific characteristics of each workflow. In this paper, we present a unique approach to evaluating the energy consumption of scientific workflows on compute clusters. Two workflows from different domains, Astronomy and Bioinformatics, are presented and their execution is analyzed on a cluster of low powered small board computers. The paper presents a theoretical analysis of an energy-aware execution of workflows that can reduce the energy consumption of workflows by up to 68% compared to normal execution. We demonstrate that there are limitations to the benefits of increasing cluster sizes and there are trade-offs when considering energy vs. performance of the workflows and that the performance and energy consumption of any scientific workflow is heavily dependent on its underlying structure. The study concludes that the energy consumption of workflows can be optimized to improve both aspects of the workflow and motivates the development of an energy-aware scheduler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.