The extended complex method is investigated for exact analytical solutions of nonlinear fractional Liouville equation. Based on the work of Yuan et al., the new rational, periodic, and elliptic function solutions have been obtained. By adjusting the arbitrary values to the constants in the constructed solutions, it can describe the physical phenomena to the traveling wave solutions, since traveling wave has significant value in applied sciences and engineering. Our results indicate that the extended complex technique is direct and easily applicable to solve the nonlinear fractional partial differential equations (NLFPDEs).
The recently introduced technique, namely, the extended complex method, is used to explore exact solutions for the generalized fifth-order KdV equation. Appropriately, the rational, periodic, and elliptic function solutions are obtained by this technique. The 3D graphs explain the different physical phenomena to the exact solutions of this equation. This idea specifies that the extended complex method can acquire exact solutions of several differential equations in engineering. These results reveal that the extended complex method can be directly and easily used to solve further higher-order nonlinear partial differential equations (NLPDEs). All computer simulations are constructed by maple packages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.