Image Compression is a demanding field in this era of communication. There is a need to study and analyze the literature for image compression, as the demand for images, video sequences and computer animation has increased at very high rate so that the increment is drastically over the years. Multimedia data whether graphics, audio, video data which is uncompress requires considerable transmission bandwidth and storage capacity. So this leads to the need of compression of images and all multimedia applications to save storage and transmission time. In this study we discuss different compression algorithms used to reduce size of images without quality reduction.
Charcot–Marie–Tooth disease (CMT) and autosomal recessive spastic ataxia of Charlevoix–Saguenay type (ARSACS) are large heterogeneous groups of sensory, neurological genetic disorders characterized by sensory neuropathies, muscular atrophies, abnormal sensory conduction velocities, and ataxia. CMT2EE (OMIM: 618400) is caused by mutations in MPV17 (OMIM: 137960), CMT4F (OMIM:614895) is caused by PRX (OMIM: 605725), CMTX1 (OMIM:302800) is caused by mutations in GJB1 (OMIM: 304040), and ARSACS (OMIM:270550) is caused by mutations in SACS (OMIM: 604490). In this study, we enrolled four families: DG-01, BD-06, MR-01, and ICP-RD11, with 16 affected individuals, for clinical and molecular diagnoses. One patient from each family was analyzed for whole exome sequencing and Sanger sequencing was done for the rest of the family members. Affected individuals of families BD-06 and MR-01 show complete CMT phenotypes and family ICP-RD11 shows ARSACS type. Family DG-01 shows complete phenotypes for both CMT and ARSACS types. The affected individuals have walking difficulties, ataxia, distal limb weakness, axonal sensorimotor neuropathies, delayed motor development, pes cavus, and speech articulations with minor variations. The WES analysis in an indexed patient of family DG-01 identified two novel variants: c.83G>T (p.Gly28Val) in MPV17 and c.4934G>C (p.Arg1645Pro) in SACS. In family ICP-RD11, a recurrent mutation that causes ARSACS, c.262C>T (p.Arg88Ter) in SACS, was identified. Another novel variant, c.231C>A (p.Arg77Ter) in PRX, which causes CMT4F, was identified in family BD-06. In family MR-01, a hemizygous missense variant c. 61G>C (p.Gly21Arg) in GJB1 was identified in the indexed patient. To the best of our knowledge, there are very few reports on MPV17, SACS, PRX, and GJB1 causing CMT and ARSACS phenotypes in the Pakistani population. Our study cohort suggests that whole exome sequencing can be a useful tool in diagnosing complex multigenic and phenotypically overlapping genetic disorders such as Charcot–Marie–Tooth disease (CMT) and spastic ataxia of Charlevoix–Saguenay type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.