HIV-1 infection is characterized by a chronic activation of the immune system and suppressed function of T lymphocytes. Regulatory CD4+ CD25high FoxP3+CD127low T cells (Treg) play a key role in both conditions. Here, we show that HIV-1 positive patients have a significant increase of Treg-associated expression of CD39/ENTPD1, an ectoenzyme which in concert with CD73 generates adenosine. We show in vitro that the CD39/adenosine axis is involved in Treg suppression in HIV infection. Treg inhibitory effects are relieved by CD39 down modulation and are reproduced by an adenosine-agonist in accordance with a higher expression of the adenosine A2A receptor on patients' T cells. Notably, the expansion of the Treg CD39+ correlates with the level of immune activation and lower CD4+ counts in HIV-1 infected patients. Finally, in a genetic association study performed in three different cohorts, we identified a CD39 gene polymorphism that was associated with down-modulated CD39 expression and a slower progression to AIDS.
Background Emerging studies indicate that some COVID-19 patients suffer from persistent symptoms including breathlessness and chronic fatigue; however the long-term immune response in these patients presently remains ill-defined. Methods Here we describe the phenotypic and functional characteristics of B and T cells in hospitalised COVID-19 patients during acute disease and at 3-6 months of convalescence. Findings We report that the alterations in B cell subsets observed in acute COVID-19 patients were largely recovered in convalescent patients. In contrast, T cells from convalescent patients displayed continued alterations with persistence of a cytotoxic programme evident in CD8 + T cells as well as elevated production of type-1 cytokines and IL-17. Interestingly, B cells from patients with acute COVID-19 displayed an IL-6/IL-10 cytokine imbalance in response to toll-like receptor activation, skewed towards a pro-inflammatory phenotype. Whereas the frequency of IL-6 + B cells was restored in convalescent patients irrespective of clinical outcome, recovery of IL-10 + B cells was associated with resolution of lung pathology. Conclusions Our data detail lymphocyte alterations in previously hospitalized COVID-19 patients up to 6 months following hospital discharge and identify 3 subgroups of convalescent patients based on distinct lymphocyte phenotypes, with one subgroup associated with poorer clinical outcome. We propose that alterations in B and T cell function following hospitalisation with COVID-19 could impact longer term immunity and contribute to some persistent symptoms observed in convalescent COVID-19 patients. Funding Provided by UKRI, Lister Institute of Preventative Medicine, The Wellcome Trust, The Kennedy Trust for Rheumatology Research and 3M Global Giving.
Systemic immune activation is a striking consequence of HIV-1 infection. Even in virologically suppressed patients, some hyperactivity of the immune system and even of the endothelium and of the coagulation pathway may persist. Apart from immune deficiency, this chronic activation may contribute to various morbidities including atherothrombosis, neurocognitive disorders, liver steatosis and osteoporosis, which are currently main challenges. It is therefore of major importance to better understand the causes and the phenotypes of immune activation in the course of HIV-1 infection. In this review we will discuss the various causes of immune activation in HIV-1 infected organisms: the presence of the virus together with other microbes, eventually coming from the gut, CD4+ T cell lymphopenia, senescence and dysregulation of the immune system, and/or genetic factors. We will also describe the activation of the immune system: CD4+ and CD8+ T cells, B cells, NKT and NK cells, dendritic cells, monocytes and macrophages, and neutrophils of the inflammation cascade, as well as of the endothelium and the coagulation system. Finally, we will see that antiretroviral therapy reduces the hyperactivity of the immune and coagulation systems and the endothelial dysfunction, but often does not abolish it. A better knowledge of this phenomenon might help us to identify biomarkers predictive of non AIDS-linked comorbidities, and to define new strategies aiming at preventing their emergence.
The mechanisms by which Regulatory T cells suppress IL-2 production of effector CD4+ T cells in pathological conditions are unclear. A subpopulation of human Treg expresses the ectoenzyme CD39, which in association with CD73 converts ATP/ADP/AMP to adenosine. We show here that Treg/CD39+ suppress IL-2 expression of activated CD4+ T-cells more efficiently than Treg/CD39−. This inhibition is due to the demethylation of an essential CpG site of the il-2 gene promoter, which was reversed by an anti-CD39 mAb. By recapitulating the events downstream CD39/adenosine receptor (A2AR) axis, we show that A2AR agonist and soluble cAMP inhibit CpG site demethylation of the il-2 gene promoter. A high frequency of Treg/CD39+ is associated with a low clinical outcome in HIV infection. We show here that CD4+ T-cells from HIV-1 infected individuals express high levels of A2AR and intracellular cAMP. Following in vitro stimulation, these cells exhibit a lower degree of demethylation of il-2 gene promoter associated with a lower expression of IL-2, compared to healthy individuals. These results extend previous data on the role of Treg in HIV infection by filling the gap between expansion of Treg/CD39+ in HIV infection and the suppression of CD4+ T-cell function through inhibition of IL-2 production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.