Event-related potentials (ERPs) are now widely collected in psychological research to determine the time courses of mental events. When event-related potentials from treatment conditions are compared, often there is no a priori information on when or how long the differences should occur. Testing simultaneously for differences over the entire set of time points creates a serious multiple comparison problem in which the probability of false positive errors must be controlled, while maintaining reasonable power for correct detection. In this work, we extend the factor-adjusted multiple testing procedure developed by Friguet, Kloareg, and Causeur (Journal of the American Statistical Association, 104, 1406-1415, 2009) to manage the multiplicity problem in ERP data analysis and compare its performance with that of the Benjamini and Hochberg (Journal of the Royal Statistical Society B, 57, 289-300, 1995) false discovery rate procedure, using simulations. The proposed procedure outperformed the latter in detecting more truly significant time points, in addition to reducing the variability of the false discovery rate, suggesting that corrections for mass multiple testings of ERPs can be much improved by modeling the strong local temporal dependencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.