This study investigated the combined effects of trans fat diet (TFD) and doxorubicin upon cardiac oxidative, inflammatory, and coagulatory stress. TFD increased trans fatty acid deposit in heart (P < 0.05), and decreased protein C and antithrombin-III activities in circulation (P < 0.05). TFD plus doxorubicin treatment elevated activities of plasminogen activator inhibitor-1, lactate dehydrogenase, and creatine phosphokinase (P < 0.05). This combination also raised xanthine oxidase activity, and enhanced cardiac levels of reactive oxygen species, interleukin (IL)-6, IL-10, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 than TFD or doxorubicin treatment alone (P < 0.05). TFD alone increased cardiac nuclear factor kappa B (NF-κB) activity (P < 0.05), but failed to affect expression of NF-κB and mitogen-activated protein kinase (MAPK) (P > 0.05). Doxorubicin treatment alone augmented cardiac activity, mRNA expression, and protein production of NF-κB and MAPK (P < 0.05). TFD plus doxorubicin treatment further upregulated cardiac expression of NF-κB p65, p-p38, and p-ERK1/2 (P < 0.05). These findings suggest that TFD exacerbates doxorubicin-induced cardiotoxicity.
Effects of carboxymethyllysine (CML) and pentosidine, two advanced glycation end-products (AGEs), upon invasion and migration in A549 and Calu-6 cells, two non-small cell lung cancer (NSCLC) cell lines were examined. CML or pentosidine at 1, 2, 4, 8 or 16 μmol/L were added into cells. Proliferation, invasion and migration were measured. CML or pentosidine at 4–16 μmol/L promoted invasion and migration in both cell lines, and increased the production of reactive oxygen species, tumor necrosis factor-α, interleukin-6 and transforming growth factor-β1. CML or pentosidine at 2–16 μmol/L up-regulated the protein expression of AGE receptor, p47phox, intercellular adhesion molecule-1 and fibronectin in test NSCLC cells. Matrix metalloproteinase-2 protein expression in A549 and Calu-6 cells was increased by CML or pentosidine at 4–16 μmol/L. These two AGEs at 2–16 μmol/L enhanced nuclear factor κ-B (NF-κ B) p65 protein expression and p38 phosphorylation in A549 cells. However, CML or pentosidine at 4–16 μmol/L up-regulated NF-κB p65 and p-p38 protein expression in Calu-6 cells. These findings suggest that CML and pentosidine, by promoting the invasion, migration and production of associated factors, benefit NSCLC metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.