Key frame extraction is an essential technique in the computer vision field. The extracted key frames should brief the salient events with an excellent feasibility, great efficiency, and with a high-level of robustness. Thus, it is not an easy problem to solve because it is attributed to many visual features. This paper intends to solve this problem by investigating the relationship between these features detection and the accuracy of key frames extraction techniques using TRIZ. An improved algorithm for key frame extraction was then proposed based on an accumulative optical flow with a self-adaptive threshold (AOF_ST) as recommended in TRIZ inventive principles. Several video shots including original and forgery videos with complex conditions are used to verify the experimental results. The comparison of our results with the-state-of-the-art algorithms results showed that the proposed extraction algorithm can accurately brief the videos and generated a meaningful compact count number of key frames. On top of that, our proposed algorithm achieves 124.4 and 31.4 for best and worst case in KTH dataset extracted key frames in terms of compression rate, while the the-state-of-the-art algorithms achieved 8.90 in the best case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.