Rhamnus nakaharai Hayata (Rhamnaceae) has been used as a folk medicine in Taiwan for treating constipation, inflammation, tumors, and asthma. 3-O-Methylquercetin (3-MQ), a main constituent of the plant, has been reported to inhibit total cAMP- and cGMP-phosphodiesterase (PDE) of guinea pig trachealis at low concentrations. 3-MQ has been also reported to more selectively inhibit PDE3 than PDE4 with a low K(m) value. Therefore we were interested in investigating its suppressive effects on ovalbumin (OVA)-induced airway hyperresponsiveness in vivo and in vitro. 3-MQ (3-30 micromol/kg, i. p.) significantly suppressed the enhanced pause (Penh) value induced by aerosolized methacholine (50 mg/mL) in sensitized mice after secondary allergen challenge. 3-MQ (3-30 micromol/kg, i. p.) also significantly suppressed total inflammatory cells, macrophages, neutrophils, and eosinophils, but not lymphocytes. In addition, 3-MQ (3 micromol/kg, i. p.) significantly decreased the secretion of TNF-alpha, and at the highest dose (30 micromol/kg, i. p.) even decreased the secretions of IL-4, IL-5, and TNF-alpha. 3-MQ (1-10 microM) as well as Ro 20-1724 (3-30 microM), a selective PDE4 inhibitor, significantly attenuated OVA (100 microg/mL)-induced contractions. 3-MQ (30 microM) as well as milrinone (1-10 microM), a selective PDE3 inhibitor, significantly enhanced baseline contractions in isolated guinea pig left and right atria. However, neither 3-MQ nor milrinone significantly affected baseline beating rate in the right atria. 3-MQ (3-30 micromol/kg, i. p.) did not significantly affect systolic pressure in conscious mice. In conclusion, 3-MQ has both anti-inflammatory and bronchodilating effects, and has the potential for use in the treatment of asthma at a dose without affecting blood pressure.
Infection with dengue virus (DV) causes diseases ranging from self-limited dengue fever to life-threatening dengue hemorrhagic fever and dengue shock syndrome. Vascular leakage, thrombocytopenia and bleeding are the clinical manifestations associated with dengue hemorrhage. We previously showed that anti-DV nonstructural protein 1 (NS1) antibodies (Abs) cross-reacted with endothelial cells. The potential target proteins on endothelial cell surface recognized by anti-DV NS1 Abs showed sequence homology with the C-terminal amino acids (a.a.) 311-352 of DV NS1. In this study, the role of NS1 C-terminal region in dengue autoimmunity was investigated. We deleted the a.a. 277-352 of DV NS1 to prepare truncated NS1 (tNS1) and generated anti-DV tNS1 Abs in mice. The endothelial cell-binding activity of anti-DV tNS1 Abs was lower than that of anti-DV NS1 Abs. In addition, the endothelial cell-binding activity of anti-DV NS1 Abs was inhibited by preabsorption with DV NS1 but not with DV tNS1 proteins. The anti-P311 (a.a. 311-330) and anti-P331 (a.a. 331-350) titers of dengue patient sera were positively correlated with their endothelial cell-binding activity. Dengue patient sera showed lower binding activity to DV tNS1 than to DV NS1 proteins. The endothelial cell-binding activity of dengue patient sera was inhibited by preabsorption with P311 and P331. This study helps to understand the molecular mechanisms of autoimmunity mediated by anti-DV NS1 Abs and to provide the potential implications of tNS1 in dengue vaccine strategies.
Rhamnus nakaharai Hayata (Rhamnaceae), has been used as a folk medicine in Taiwan for treating constipation, inflammation, tumors and asthma. 3-O-methylquercetin (3-MQ), a main constituent of the plant, has been reported to inhibit total cAMP- and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. Therefore we were interested in investigating the inhibitory effect of 3-MQ on various PDE isozymes from guinea pig lungs and hearts. Isolated guinea pig lungs and hearts were homogenized and centrifuged. The supernatant was chromatographed over a column of Q-sepharose, and eluted with various concentrations of NaCl. In the following order, PDE subtypes 1, 5, 2, 4 from lungs, and 3 from hearts were separated. The IC 50 values of 3-MQ on these isozymes were 31.9, 86.9, 18.6, 28.5 and 1.6 microM, respectively. 3-MQ (10-100 microM) non-competitively inhibited PDE2, but competitively inhibited PDE4. 3-MQ (1-10 microM) also competitively inhibited PDE3. However, 3-MQ (10-100 microM) did not competitively inhibit PDE1 and 5, although it had a tendency to competitively inhibit PDE1 at concentrations of 10 - 30 microM. The present results showed that K i value of 3-MQ was similar to that of milrinone in PDE3, and was not significantly different from that of Ro 20 - 1724 in PDE4, respectively. In conclusion, 3-MQ was revealed to be a selective and competitive PDE3/PDE4 inhibitor, although its inhibitory effect on PDE4 was not potent. Therefore, 3-MQ may have a potential in the treatment of asthma beside its antiviral activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.