Pulmonary fibrosis (PF) is a clinically common disease caused by many factors, which will lead to lung function decline and even respiratory failure. Jingyin granule has been confirmed to have anti-inflammatory and antiviral effects by former studies, and has been recommended for combating H1N1 influenza A virus (H1N1) infection and Coronavirus disease 2019 (COVID-19) in China. At present, studies have shown that patients with severe COVID-19 infection developed lung fibrotic lesions. Although Jingyin granule can improve symptoms in COVID-19 patients, no study has yet reported whether it can attenuate the process of PF. Here, we explored the underlying mechanism of Jingyin granule against PF by network pharmacology combined with in vitro experimental validation. In the present study, the active ingredients as well as the corresponding action targets of Jingyin granule were firstly collected by TCMSP and literature data, and the disease target genes of PF were retrieved by disease database. Then, the common targets were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and then a PPI network and an ingredient–target network were constructed. Next, UPLC-MS was used to isolate and identify selected representative components in Jingyin granule. Finally, LPS was used to induce the A549 cell fibrosis model to verify the anti-PF effect of Jingyin granule in vitro. Our results indicated that STAT3, JUN, RELA, MAPK3, TNF, MAPK1, IL-6, and AKT1 were core targets of action and bound with good affinity to selected components, and Jingyin granule may alleviate PF progression by Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3), the mammalian nuclear factor-κB (NF-κB), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), tumor necrosis factor (TNF), and the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathways. Overall, these results provide future therapeutic strategies into the mechanism study of Jingyin granule on PF.
Danshen, the dried root of Salvia miltiorrhiza Bunge (Lamiaceae), is one of the traditional Chinese medicines (TCMs) most commonly used for the treatment of cardiovascular and cerebrovascular diseases. However, little is known about the chemical and metabolic profiles of danshen in vitro or in vivo. In particular, more information is needed in relation to the 50% ethanol extracts usually used in danshen formulations such as Fufang Xueshuantong Capsules and Fufang Danshen tablets. High-performance liquid chromatography coupled with a linear ion trap-Orbitrap mass spectrometer (HPLC-LTQ-Orbitrap) provides a sensitive and accurate method for analyzing the composition of samples. This method was used to determine the in vitro and in vivo chemical and metabolic profiles of danshen. Sixty-nine components of danshen extract and 118 components of danshen in rat plasma, urine, feces, and bile were unambiguously or tentatively identified. These results not only revealed the material composition of danshen, but also provided a comprehensive research approach for the identification of multi-constituents in TCMs.
The main proteases (M ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of M from complex herbal matrices. This work begins with biological screening of sixty clinically used antiviral herbal medicines, among which Lonicera japonica (LJ) demonstrated the strongest anti-M effect (IC = 37.82 μg/mL). Mass spectrometry-based chemical analysis and chemoproteomic profiling revealed that LJ extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify M . We subsequently verified the anti-M effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit SARS-CoV-2 M in dose- and time- dependent manners, with the IC values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of M from herbal medicines by integrating target-based high-throughput screening and mass spectrometry-based assays, which would greatly facilitate the discovery of key anti-viral constituents from medicinal plants.
Chemical constituents in extract of Scrophulariae Radix and their metabolites in rat plasma after oral administration were identified by HPLC-LTQ-Orbitrap. Samples were separated by a Venusil MP C₁₈ column using a binary gradient elution. The information on the total ion chromatogram, the extraction chromatogram and the mass spectrogram in a negative mode were synthetically analyzed by comparing the retention time, MS and MS/MS spectra with literature data and some of reference standards to conduct a qualitative study on constituents of Radix Scrophulariae extract in vivo and in vitro. Totally 37 compounds from Scrophularia ningpoensis extract were detected including 12 iridoid glycosides, 20 phenylpropanoids and 5 unknown compounds. In vivo, harpagide, harpagoside and angoroside C were confirmed to enter into the blood in prototype forms. Besides, another 2 prototype compounds and 2 metabolites were detected in rat plasma after oral administration of S. ningpoensis extract. The results are beneficial for the determination of bioactive substances of S. ningpoensis and significant for further studies on S. ningpoensis.
Ten phenanthrenes, two organic acids, one organic acid ester and one flavonoid were isolated from the aerial part of Juncus setchuensis by various chromatographic techniques usingsilica gel, polyamide, Sephadex LH-20 as solid phases, and preparative HPLC. Their structures were identified by MS and NMR spectroscopic data as effusol(1), juncusol(2), juncuenin D(3), dehydroeffusol(4), dehydrojuncusol(5), juncuenin B(6),dehydrojuncuenin B(7), 2-methoxyl-7-hydroxyl-1-methyl-5-vinyl phenanthrene(8), 2-hydroxyl-7-carboxy-1-methyl-5-vinyl-9,10-dihydrophenanthrene(9), 2-hydroxyl-7-carboxyl-1-methyl-5-vinylphenanthrene(10), luteolin(11), vanillic acid(12), daphnetin(13), p-coumaric acid(14), respectively. Compound 13 was isolated from the genus Juncus for the first time and compounds 5, 8-12 were isolated from J. setchuensis for the first time. The elevated plus-maze(EPM) was used to evaluate the anxiolytic activity of compounds 6 and 7. Compound 6 at 5 mg•kg⁻¹ and 10 mg•kg⁻¹ showed anxiolytic activity as well as compound 7 at 10 mg•kg⁻¹ and 20 mg•kg⁻¹.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.