As an important ecological barrier in northern China, the ecological environment of the Yellow River Basin (YRB) has been greatly improved in recent decades. However, due to spatially non-stationarity, the contribution of human activities and natural factors to vegetation restoration may exhibit different coupling effects in various areas. In this paper, the Normalized Difference Vegetation Index (NDVI) of the YRB from 1986 to 2021 was used as the dependent variable, and terrain, meteorological, and socioeconomic factors were used as independent variables. With the help of Multiscale Geographically Weighted Regression (MGWR), which could handle the scale difference well, combined with Ordinary Least Squares (OLS) and traditional Geographically Weighted Regression (GWR), the spatial non-stationary relationship between vegetation and related factors was discussed. The results showed that: (1) The vegetation was subject to fluctuating changes from 1986 to 2021, mainly improving, with a growth rate of 0.0018/year; the spatial distribution pattern of vegetation in the basin was high in the southeast and low in the northwest. (2) Compared with the OLS and GWR, the MGWR could better explain the relationship between vegetation and various factors. (3) The response scale of vegetation and related factors was significantly variant, and this scale changed with time. The effect scale of terrain factor is lower than climate and social factors. (4) There was obvious spatial heterogeneity in the effects of various influencing factors on vegetation. The vegetation of the upstream was mainly positively affected by mean annual temperature (coefficients ∈ [1.507, 1.784]); while potential evapotranspiration was the dominant factor of vegetation in the middle and lower reaches of the basin (coefficients ∈ [−1.724, −1.704]); it was worth noting that the influence of social factors on vegetation was relatively small. This study deeply explores the spatial non-stationarity of vegetation and various related factors, thereby revealing the evolution law of vegetation pattern and providing scientific support for monitoring and improving the ecological environment quality of the YRB.
As a major world crop, the accurate spatial distribution of winter wheat is important for improving planting strategy and ensuring food security. Due to big data management and processing requirements, winter wheat mapping based on remote-sensing data cannot ensure a good balance between the spatial scale and map details. This study proposes a rapid and robust phenology-based method named “enhanced time-weighted dynamic time warping” (E-TWDTW), based on the Google Earth Engine, to map winter wheat in a finer spatial resolution, and efficiently complete the map of winter wheat at a 10-m resolution in Henan Province, China. The overall accuracy and Kappa coefficient of the resulting map are 97.98% and 0.9469, respectively, demonstrating its great applicability for winter wheat mapping. This research indicates that the proposed approach is effective for mapping large-scale planting patterns. Furthermore, based on comparative experiments, the E-TWDTW method has shown excellent robustness across lower quantities of training data and early season extraction ability. Therefore, it can provide early data preparation for winter wheat planting management in the early stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.