Two series of microporous lanthanide coordination networks of the general formula, {[Ln(ntb)Cl(3)] x xH(2)O}(n) (series 1: monoclinic C2/c, Ln = Sm and Tb; series 2: hexagonal P3(1)/c, Ln = Sm and Eu; ntb = tris(benzimidazol-2-ylmethyl)amine, x = 0-4) have been synthesized and characterized by IR, elemental analyses, thermal gravimetry, and single-crystal and powder X-ray diffraction methods. In both series, the monomeric [Ln(ntb)Cl(3)] coordination units are consolidated by N-H...Cl or C-H...Cl hydrogen bonds to sustain three-dimensional (3D) networks. However, the different modes of hydrogen bonding in the two series lead to crystallization of the same [Ln(ntb)Cl(3)] monomers in different forms (monoclinic vs. hexagonal), consequently giving rise to distinct porous structures. The resulting hydrogen-bonded coordination networks display high thermal stability and robustness in water removal/inclusion processes, which was confirmed by temperature-dependent single-crystal-to-single-crystal transformation measurements. Adsorption studies with H(2), CO(2), and MeOH have been carried out, and reveal distinct differences in adsorption behavior between the two forms. In the case of MeOH uptake, the monoclinic network shows a normal type I isotherm, whereas the hexagonal network displays dynamic porous properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.