The diffusion-dependent kinetic properties of the yeast glyoxalase I reaction have been measured by means of viscosometric methods. For the glyoxalase-I-catalyzed isomerization of glutathione (GSH)-methylglyoxal thiohemiacetal to S-D-Iactoylghtathione, the k,,,lK, (3.5 X 10" M-' s-', pH 7, 25 "C) undergoes a progressive decrease in magnitude with increasing solution viscosity, using sucrose as a viscogenic agent. The viscosity effect is unlikely to be due to a sucrose-induced change in the intrinsic kinetic properties of the enzyme, as the magnitude of k,.,,lK,, for the slow substrate GSH-t-butylglyoxal thiohemiacetal (3.5X1O3M-' s-', pH 7, 25OC) is independent of solution viscosity. Quantitative treatment of the data by means of the Stokes-Einstein diffusion law suggests that catalysis will be about 50% diffusion limited under conditions where [substrate] < K,; the encounter complex between enzyme and substrate partitions nearly equally between product formation and dissociation to form free enzyme and substrate. In a related study, the steady-state concentrations of glyoxalase-pathway intermediates in glycolyzing human erythrocytes are estimated to be in the nanomolar concentration range, on the basis of published values for the activities of glyoxalase I and glyoxalase I1 in lysed erythrocytes and the steady-state rate of formation of D-lactate in intact erythrocytes. This is consistent with a model of the glyoxalase pathway in which the enzyme-catalyzed steps are significantly diffusion limited under physiological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.