Biomolecule-mediated ZnO synthesis has great potential for the tailoring of ZnO morphology for specific application in biosensors, window materials for display and solar cells, dye-sensitized solar cells (DSSCs), biomedical materials, and photocatalysts due to its specificity and multi-functionality. In this contribution, the effect of a ZnO-binding peptide (ZnO-BP, G-12: GLHVMHKVAPPR) and its GGGC-tagged derivative (GT-16: GLHVMHKVAPPRGGGC) on the growth of ZnO crystals expressing morphologies dependent on the relative growth rates of (0001) and (10 10) planes of ZnO have been studied. The amount of peptide adsorbed was determined by a depletion method using oriented ZnO films grown by Atomic Layer Deposition (ALD), while the adsorption behavior of G-12 and GT-16 was investigated using XPS and a computational approach. Direct evidence was obtained to show that (i) both the ZnO-BP identified by phage display and its GGGC derivative (GT-16) are able to bind to ZnO and modify crystal growth in a molecule and concentration dependent fashion, (ii) plane selectivity for interaction with the (0001) versus the (10 10) crystal planes is greater for GT-16 than G-12; and (iii) specific peptide residues interact with the crystal surface albeit in the presence of charge compensating anions. To our knowledge, this is the first study to provide unambiguous and direct quantitative experimental evidence of the modification of ZnO morphology via (selective and nonselective) adsorption-growth inhibition mechanisms mediated by a ZnO-BP identified from phage display libraries.
The controlled synthesis of ZnO at the micro- and nanoscale has been the focus of significant research due to its importance in electrical and optoelectronic applications, and the potential of tuning its properties at the crystal formation stage. We present a detailed study of ZnO growth processes which supports and consolidates previous findings and gives a clearer understanding of the mechanism of ZnO formation. The influence of synthesis conditions on ZnO formation was investigated by comparison of two different growth routes (Zn(CH3COO)2–NH3 and Zn(NO3)2·6H2O−HMTA) both known to result in the formation of wurtzite structured, twinned hexagonal rods of ZnO. The identities of the solid phases formed and supernatants were confirmed by data from SEM, XRD, FTIR, XPS, TGA, and ICP-OES analysis; giving insight into the involvement of multistep pathways. In both cases, reaction takes place via intermediates known as layered basic zinc salts (LBZs) which only later transform to the oxide phase. In the ZnAc2–NH3 system, crystal growth evolves as Zn(CH3COO)2 → LBZA (A: acetate) → ZnO through a dissolution/reprecipitation process, with the formation of an additional product identified as LBZAC (C: carbonate). In contrast, in the Zn(NO3)2·6H2O−HMTA system, solid-phase transformation occurs as Zn(NO3)2·6H2O → LBZN (N: nitrate) → ZnO with no evidence of dissolution. Similar comprehensive studies can be applied to other solid-state processes to further advance functional materials design.
ZnO-binding peptides, differing only by Met or Cys at position 5 modify the mechanism of ZnO crystal growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.