Aims The preoperative serum levels of inflammatory mediators, including C-reactive protein (CRP), procalcitonin (PCT) and interleukin-6 (IL-6), have been demonstrated to be correlated with patient outcomes in colorectal cancer (CRC); however, the prognostic role of these levels has been less well-studied in postoperative settings. Materials and methods A total of 122 stage I-III CRC patients were retrospectively enrolled. Serum levels of CRP, PCT and IL-6 were measured after surgery, and their prognostic value was evaluated. Kaplan-Meier analysis was used to determine the differences in disease-free survival (DFS) and overall survival (OS) between patients with different levels of these mediators, and the Cox proportional hazards model was used to estimate the risk factors. Results In contrast to CRP and PCT, only the level of IL-6 was significant in predicting DFS (P = 0.01) but not OS (P = 0.07). A total of 66.39% (81/122) of patients were assigned to the low IL-6 group and no significant differences were found in the collected clinicopathological parameters among the low or high IL-6 subgroups. The level of IL-6 was negatively correlated with postoperative (1 w) (R=-0.24, P = 0.02) absolute lymphocyte counts. Patients with low levels of IL-6 had better DFS (log rank = 6.10, P = 0.01) but not OS (log rank = 2.28, P = 0.13). Finally, the level of IL-6 was an independent risk factor for DFS (HR: 1.81, 95% CI: 1.03–3.15, P = 0.04). Conclusions Compared to CRP and PCT, the level of IL-6 was observed to be the only significant factor in predicting the prognosis of stage I-III CRC patients after surgery, and a low level of IL-6 was associated with good DFS.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Background: This study attempts to detect the expression of FoxP3, CD68, CD8α, and PD-L1 in the tumor microenvironment (TME) of intrahepatic cholangiocarcinoma (ICC), and analyze the relationship between the corresponding cells and clinicopathological characteristics as well as prognosis of ICC.Methods: RNA sequencing (RNA-seq) provided the general landscape of the TME in ICC. A total of 99 ICC patients and the corresponding specimens were used for multiplex immunofluorescence and relapse-free survival (RFS) was analyzed. Flow cytometry further validated the effect of regulatory T (Treg) cells on ICC relapse.Results: RNA-seq data showed that the infiltration of Treg cells, CD8+ T cells, and macrophages were likely associated with ICC relapse. The survival analysis based on multiplex immunofluorescence showed that the high FoxP3(+) Treg cells ratio and low CD68(+) macrophages ratio in mesenchyme were associated with higher RFS rate, respectively. Low FoxP3(+) Τreg cells ratio was associated with more perineural invasion, and high CD68(+) macrophages ratio was correlated with more lymph node metastasis. Cox regression analysis revealed that FoxP3(+) Treg cells ratio was an independent predictive factor for ICC relapse. Flow cytometry showed that TregIII was the predominant Treg cell subtype in both tumor tissue and peripheral blood of ICC patients, and high TregIII abundance in peripheral blood was significantly associated with longer RFS of ICC patients. Conclusion:High FoxP3(+) Treg cells ratio in the mesenchyme of ICC tumor tissue predicted longer RFS and was an independent favorable prognostic factor for ICC The first two authors contributed equally to this article.
Colorectal cancer (CRC) is one of the most common malignant tumors. Approximately 5%–6% of CRC cases are associated with hereditary CRC syndromes, including the Peutz–Jeghers syndrome (PJS). Liver kinase B1 (LKB1), also known as STK11, is the major gene responsible for PJS. LKB1 heterozygotic deficiency is involved in intestinal polyps in mice, while the mechanism of LKB1 in CRC remains elusive. In this study, we generated LKB1 knockout (KO) CRC cell lines by using CRISPR‐Cas9. LKB1 KO promoted CRC cell motility in vitro and tumor metastases in vivo. LKB1 attenuated expression of TRAF2 and NCK‐interacting protein kinase (TNIK) as accessed by RNA‐seq and western blots, and similar suppression was also detected in the tumor tissues of azoxymethane/dextran sodium sulfate‐induced intestinal‐specific LKB1‐KO mice. LKB1 repressed TNIK expression through its kinase activity. Moreover, attenuating TNIK by shRNA inhibited cell migration and invasion of CRC cells. LKB1 loss‐induced high metastatic potential of CRC cells was depended on TNIK upregulation. Furthermore, TNIK interacted with ARHGAP29 and further affected actin cytoskeleton remodeling. Taken together, LKB1 deficiency promoted CRC cell metastasis via TNIK upregulation and subsequently mediated cytoskeleton remodeling. These results suggest that LKB1‐TNIK axis may play a crucial role in CRC progression.
The tumorigenesis and progression of colorectal cancer are closely related to the tumor microenvironment, especially inflammatory response. Inhibitors of histone deacetylase (HDAC) have been reported as epigenetic regulators of the immune system to treat cancer and inflammatory diseases and our results demonstrated that Celastrol could act as a new HDAC inhibitor. Considering macrophages as important members of the tumor microenvironment, we further found that Celastrol could influence the polarization of macrophages to inhibit colorectal cancer cell growth. Specially, we used the supernatant of HCT116 and SW480 cells to induce Ana-1 cells in vitro and chose the spontaneous colorectal cancer model APC min/+ mice as an animal model to validate in vivo. The results indicated that Celastrol could reverse the polarization of macrophages from M2 to M1 through impacting the colorectal tumor microenvironment both in vitro and in vivo. Furthermore, using bioinformatics analysis, we found that Celastrol might mechanistically polarize the macrophages through MAPK signaling pathway. In conclusion, our findings identified that Celastrol as a new HDAC inhibitor and suggested that Celastrol could modulate macrophage polarization, thus inhibiting colorectal cancer growth, which may provide some novel therapeutic strategies for colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.