The ability to store sperm in the female genital tract is frequently observed in vertebrates as well as in invertebrates. Because of the presence of a system that maintains the ejaculated sperm alive in the female reproductive tract in a variety of animals, this strategy appears to be advantageous for animal reproduction. Although the occurrence and physiological reasons for sperm storage have been reported extensively in many species, the mechanism of sperm storage in the female reproductive tract has been poorly understood until recently. In avian species, the specialized simple tubular invaginations referred to as sperm storage tubules (SSTs) are found in the oviduct as a sperm storage organ. In this review, we summarize the current understanding of the mechanism of sperm uptake into the SSTs, maintenance within it, and controlled release of the sperm from the SSTs. Since sperm storage in avian species occurs at high body temperatures (i.e., 41 C), elucidation of the mechanism for sperm storage may lead to the development of new strategies for sperm preservation at ambient temperatures, and these could be used in a myriad of applications in the field of reproduction.
Although successful fertilization depends on timely encounters between sperm and egg, the decoupling of mating and fertilization often confers reproductive advantages to internally fertilizing animals. In several vertebrate groups, postcopulatory sperm viability is prolonged by storage in specialized organs within the female reproductive tract. In birds, ejaculated sperm can be stored in a quiescent state within oviductal sperm storage tubules (SSTs), thereby retaining fertilizability for up to 15 weeks at body temperature (41 °C); however, the mechanism by which motile sperm become quiescent within SSTs is unknown. Here, we show that low oxygen and high lactic acid concentrations are established in quail SSTs. Flagellar quiescence was induced by lactic acid in the concentration range found in SSTs through flagellar dynein ATPase inactivation following cytoplasmic acidification (
Fertilization in animals that employ sexual reproduction is an indispensable event for the production of the next generation. A significant advancement in our understanding of the molecular mechanisms of sperm-egg interaction in mammalian species was achieved in the last few decades. However, the same level of knowledge has not been accumulated for birds because of egg size and the difficulty in mimicking the physiological polyspermy that takes place during normal fertilization. In this review, we summarize the current understanding of sperm-egg interaction mechanism during fertilization in birds, especially focusing on sperm-egg binding, sperm acrosome reaction and the authentic sperm protease required for the hole formation on the perivitelline membrane. We explain that the zona pellucida proteins (ZP1 and ZP3) in the perivitelline membrane play important roles in sperm-egg binding, induction of the acrosome reaction as well as sperm penetration by digestion of sperm protease. We anticipate that a deeper understanding of avian fertilization will open up new avenues to create powerful tools for a myriad of applications in the poultry industries including the production of transgenic and cloned birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.