To help understand the potential impact of bacterial coinfection during pandemic influenza periods, we undertook a far-reaching review of the existing literature to gain insights into the interaction of influenza and bacterial pathogens. Reports published between 1950 and 2006 were identified from scientific citation databases using standardized search terms. Study outcomes related to coinfection were subjected to a pooled analysis. Coinfection with influenza and bacterial pathogens occurred more frequently in pandemic compared with seasonal influenza periods. The most common bacterial coinfections with influenza virus were due to S. pneumoniae, H. influenzae, Staphylococcus spp., and Streptococcus spp. Of these, S. pneumoniae was the most common cause of bacterial coinfection with influenza and accounted for 40.8% and 16.6% of bacterial coinfections during pandemic and seasonal periods, respectively. These results suggest that bacterial pathogens will play a key role in many countries, as the H1N1(A) influenza pandemic moves forward. Given the role of bacterial coinfections during influenza epidemics and pandemics, the conduct of well-designed field evaluations of public health measures to reduce the burden of these common bacterial pathogens and influenza in at-risk populations is warranted.
The spread of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged suddenly at the end of 2019 and the disease came to be known as coronavirus disease 2019 (COVID-19). To date, there is no specific therapy established to treat COVID-19. Identifying effective treatments is urgently required to treat patients and stop the transmission of SARS-CoV-2 in humans. For the present review, >100 publications on therapeutic agents for COVID-19, including in vitro and in vivo animal studies, case reports, retrospective analyses and meta-analyses were retrieved from PubMed and analyzed, and promising therapeutic agents that may be used to combat SARS-CoV-2 infection were highlighted. Since the outbreak of COVID-19, different drugs have been repurposed for its treatment. Existing drugs, including chloroquine (CQ), its derivative hydroxychloroquine (HCQ), remdesivir and nucleoside analogues, monoclonal antibodies, convalescent plasma, Chinese herbal medicine and natural compounds for treating COVID-19 evaluated in experimental and clinical studies were discussed. Although early clinical studies suggested that CQ/HCQ produces antiviral action, later research indicated certain controversy regarding their use for treating COVID-19. The molecular mechanisms of these therapeutic agents against SARS-CoV2 have been investigated, including inhibition of viral interactions with angiotensin-converting enzyme 2 receptors in human cells, viral RNA-dependent RNA polymerase, RNA replication and the packaging of viral particles. Potent therapeutic options were reviewed and future challenges to accelerate the development of novel therapeutic agents to treat and prevent COVID-19 were acknowledged. Contents 1. Introduction: Identification of the COVID-19 pandemic 2. Chloroquine and hydroxychloroquine 3. Remdesivir and other nucleoside analogues 4. Antibody-based therapy for COVID-19 5. Chinese herbal medicine for treating SARS-CoV-2 infection 6. Other options for treating COVID-19 7. Antiviral mechanisms of therapeutic agents against SARS-CoV2 8. Conclusions and future perspectives
Parkinson’s disease (PD) is a common neurodegenerative disorder caused by genetic, epigenetic, and environmental factors. Recent advance in genomics and epigenetics have revealed epigenetic mechanisms in PD. These epigenetic modifications include DNA methylation, post-translational histone modifications, chromatin remodeling, and RNA-based mechanisms, which regulate cellular functions in almost all cells. Epigenetic alterations are involved in multiple aspects of neuronal development and neurodegeneration in PD. In this review, we discuss current understanding of the epigenetic mechanisms that regulate gene expression and neural degeneration and then highlight emerging epigenetic targets and diagnostic and therapeutic biomarkers for treating or preventing PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.