Background: Differentiating malignant lung tumors from benign pulmonary nodules is a great challenge.While the analysis of bronchoalveolar lavage fluid (BALF) is used for diagnosing infections and interstitial lung diseases, there is limited evidence to support its use for lung cancer diagnosis. This study aimed to interrogate the potential of using BALF cell-free DNA (cfDNA) to discriminate malignant lesions from benign nodules.Methods: Fifty-three patients with solid pulmonary nodules (≤2 cm) were prospectively enrolled, including 21 confirmed with benign disease and 32 with malignant tumors. Mutations were profiled for 30 tumor tissues and 40 BALFs. Paired BALFs and plasma from 48 patients underwent DNA methylation profiling. A methylome-based classification model was developed for BALF and plasma separately.Results: Among the 30 patients with paired tissues and BALFs, 96.7% and 70% had alterations detected from their tissues (79 alterations) and BALFs (53 alterations), respectively. Using tissues as references, BALFs revealed 14 new alterations and missed 41. BALF mutation displayed a sensitivity of 71%, specificity of 77.8%, and accuracy of 72.5% in detecting lung cancer. BALF methylation achieved an accuracy of 81.3%, with both sensitivity and specificity being 81%. Plasma methylation showed a 66.7% sensitivity, 71.4% specificity, and 68.8% accuracy. BALF methylation also demonstrated 82.4% sensitivity in stage I patients.Parallel bronchoscopy, lavage cytology, and bronchial brushing demonstrated an inferior sensitivity of 23%, 3.1%, and 9.7%, respectively, compared with BALF methylation and mutation (P<0.0001).Conclusions: BALF cfDNA can serve as a liquid biopsy media for both mutation and methylation profiling, demonstrating better sensitivities in distinguishing small malignant tumors from benign nodules than conventional methods.
Background:Due to absence of visible endobronchial target, the diagnostic yield of flexible bronchoscopy for peribronchial lesions has been unsatisfactory. Convex probe endobronchial ultrasound (CP-EBUS) has allowed for performing real-time transbronchial needle aspiration (TBNA) of enlarged hilar and mediastinal lymph nodes and therefore could also be used as a means of diagnosing proximal peribronchial lesions.Methods:We retrospectively analyzed the results related to 72 patients who underwent CP-EBUS for peribronchial lesions without endobronchial involvement and adjacent to three-grade bronchi based on chest computed tomography (CT) scan. We recorded the images during EBUS as well as the diagnostic results of TBNA and conventional-transbronchial lung biopsy/brush (C-TBLB/b), and final diagnoses were based on pathologic analysis and follow-up.Results:In all cases, the mass was able to be identified using EBUS in 97.2% patients (70/72) who were performed with EBUS-TBNA + C-TBLB/b. Sixty-six patients had a final diagnosis, 80.0% patients (56/70) had malignancies, and 14.3% patients (10/70) had benign disease. In malignancies, the diagnostic yield of C-TBLB/b was 57.1% (32/56) and in EBUS-TBNA was 85.7% (48/56), whereas pathologic diagnosis reached 94.6% when EBUS-TBNA was combined with C-TBLB/b. C-TBLB/b + EBUS-TBNA also exhibited stronger potency of histolytic diagnosis for malignancies than either EBUS-TBNA or C-TBLB/b alone. Furthermore, there are data supporting the value of EBUS-TBNA for the diagnosis of benign lung disease.Conclusion:The combined endoscopic approach with EBUS-TBNA and C-TBLB/b is an accurate and effective method for the evaluation of peribronchial lesions, with better results than using each technique alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.