A new mononuclear europium complex incorporating the (+)‐di‐p‐toluoyl‐d‐tartaric acid (d‐H2DTTA) ligand, namely, catena‐poly[tris{μ2‐3‐carboxy‐2,3‐bis[(4‐methylphenyl)carbonyloxy]propanoato}tris(methanol)europium(III)], [Eu(C20H17O8)3(CH3OH)3]n, (I), has been synthesized and characterized by IR spectroscopy, elemental analysis, powder X‐ray diffraction and single‐crystal X‐ray diffraction analysis. The structure analysis indicates that complex (I) crystallizes in the trigonal space group R3 and exhibits an infinite one‐dimensional chain structure, in which the Eu3+ ion is surrounded by six O atoms from six d‐HDTTA− ligands and three O atoms from three coordinated methanol molecules, thus forming a tricapped trigonal prism geometry. The d‐H2DTTA ligand is partially deprotonated and adopts a μ1,6‐coordination mode via two carboxylate groups to link adjacent Eu3+ ions, affording an infinite one‐dimensional propeller‐shaped coordination polymer chain along the c axis, with an Eu…Eu distance of 7.622 (1) Å. Moreover, C—H…π interactions lead to the formation of helical chains running along the c axis and the whole structure displays a snowflake pattern in the ab plane. The circular dichroism spectrum confirms the chirality of complex (I). The solid‐state photoluminescence properties were also investigated at room temperature and (I) exhibits characteristic red emission bands derived from the Eu3+ ion (CIE 0.63, 0.32), with a reasonably long lifetime of 0.394 ms, indicating effective energy transfer from the ligand to the metal centre. In addition, a magnetic investigation reveals single‐ion magnetic behaviour. The spin‐orbit coupling parameter (λ) between the ground and excited states is fitted to be 360 (2) cm−1 through Zeeman perturbation. Therefore, complex (I) may be regarded as a chiral optical‐magneto bifunctional material.
A microbial flocculant (MBF) producing silicate bacteria MT5-2 was isolated from different sources of samples by silicate selected medium. Its chemical composition, optimal flocculation conditions,flocculation characteristics and primary application were studied in this paper. The results showed that the flocculant was an extracellular polysaccharide, and its flocculation activity was mainly distributed in the fermentation broth. The optimal flocculation conditions were as follows: for the 100 mL kaolin suspension, flocculant dosage was 4mL, metal cation dosage was 1% of ZnCl2 3mL, pH 7.5. The flocculation activity can reach 95% under this condition. Application results showed that flocculant MT5-2 had better flocculation activity in several common suspensions, such as kieselguhr, bentonite, soil, active carbon and starch, compared with polyacrylamide and inorganic salt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.