Instability in financial markets represents a considerable risk to investors; examples of instability include a market crash caused by systematic risks and abnormal stock price volatility caused by artificial hype. The early detection of abnormal behavior can help investors adjust their strategy and reduce investment risks. We proposed a spatiotemporal convolutional neural network-based relational network (STCNN-RN) model that can learn the complex correlations between multiple financial timeseries data sets, and we used genetic algorithms with a constrained gene to discover the time points for outlier companies by fitting the STCNN-RN model; we used these outlier points to identify abnormal situations. Most research on identifying anomalous patterns has been unable to sufficiently explain the reason for anomalies to investors. We applied an interpretability model to enable investors to understand these anomalous time points in relation to companies and discover the key factors giving rise to the anomalies. The experiment results revealed that the proposed model can be used to model multiple financial time-series data sets and to capture anomalous situations in relevant companies. Because this study explored the discovery of anomaly phenomena in all transaction data and the explanation of these abnormalities, investors can understand a stock market situation holistically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.