Viruses evade immune detection partly through immune-associated mutations. Analyses of HIV sequences derived from infected persons have identified numerous examples of HLA-associated mutations within or adjacent T cell epitopes, but the potential impact of most mutations on epitope production and presentation remains unclear. The multistep breakdown of proteins into epitopes includes trimming of N-extended peptides into epitopes by aminopeptidases before loading onto MHC-I molecules. Defining sequence signatures that modulate epitope production would lead to a better understanding of factors driving viral evolution and immune escape at the population level. Here we identified cytosolic aminopeptidases cleavage preferences in primary cells, its impact on HIV antigen degradation into epitopes in primary human cell extracts by mass spectrometry, and on epitope presentation to CTL. We observed a hierarchy of preferred amino acid cleavage by cytosolic aminopeptidases. We demonstrated that flanking mutations producing more or less cleavable motifs can increase or decrease epitope production and presentation by up to 14-fold. We found that the efficiency of epitope production correlates with cleavability of flanking residues. These in vitro findings were supported by in vivo population-level analyses of clinically-derived viral sequences from 1134 antiretroviral-naïve HIV-infected persons: HLA-associated mutations immune pressures drove the selection of residues that are less cleavable by aminopeptidases predominantly at N-flanking sites, leading to reduced epitope production and immune recognition. These results underscore an important and widespread role of antigen processing mutations in HIV immune escape and identify molecular mechanisms underlying impaired epitope presentation.
Dendritic cells (DCs), macrophages (MPs) and monocytes are permissive to HIV. Whether they similarly process and present HIV epitopes to HIV-specific CD8 T cells is unknown despite the critical role of peptide processing and presentation for recognition and clearance of infected cells. Cytosolic peptidases degrade endogenous proteins originating from self or pathogens, exogenous antigens preprocessed in endolysosomes, thus shaping the peptidome available for endoplasmic reticulum (ER) translocation, trimming and MHC-I presentation. Here we compared the capacity of DCs, MPs and monocyte cytosolic extracts to produce epitope precursors and epitopes. We showed differences in the proteolytic activities and expression levels of cytosolic proteases between monocyte-derived DCs and MPs and upon maturation with LPS, R848 and CL097, with mature MPs having the highest activities. Using cytosol as a source of proteases to degrade epitope-containing HIV peptides, we showed by mass spectrometry that the degradation patterns of long peptides and the kinetics and amount of antigenic peptides produced differed among DCs, MPs and monocytes. Additionally, variable intracellular stability of HIV peptides prior to loading onto MHC may accentuate the differences in epitope availability for presentation by MHC-I between these subsets. Differences in peptide degradation led to 2- to 25-fold differences in the CTL responses elicited by the degradation peptides generated in DCs, MPs and monocytes. Differences in antigen processing activities between these subsets might lead to variations in the timing and efficiency of recognition of HIV-infected cells by CTLs and contribute to the unequal capacity of HIV-specific CTLs to control viral load.
Antigen processing by intracellular proteases and peptidases and epitope presentation are critical for recognition of pathogen-infected cells by CD8+ T lymphocytes. First generation HIV protease inhibitors (PIs) alter proteasome activity, but the effect of first or second generation PIs on other cellular peptidases, the underlying mechanism and impact on antigen processing and epitope presentation to CTL are still unknown. Here we demonstrate that several HIV PIs altered not only proteasome but also aminopeptidase activities in PBMC. Using an in vitro degradation assay involving PBMC cytosolic extracts we showed that PIs altered the degradation patterns of oligopeptides and peptide production in a sequence-specific manner, enhancing the cleavage of certain residues and reducing others’. PIs affected the sensitivity of peptides to intracellular degradation, altered the kinetics and amount of HIV epitopes produced intracellularly. Accordingly the endogenous degradation of incoming virions in the presence of PIs led to variations in CTL-mediated killing of HIV-infected cells. By altering host protease activities and the degradation patterns of proteins in a sequence-specific manner, HIV PIs may diversify peptides available for MHC-I presentation to CTL, alter the patters of CTL responses, and may provide a complementary approach to current therapies for the CTL-mediated clearance of abnormal cells in infection, cancer or other immune disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.