Recently, a novel class of transcripts, long non-coding RNAs (lncRNAs), is being identified at a rapid pace. These RNAs have critical roles in diverse biological processes, including tumorigenesis. Here we report that taurine-upregulated gene 1 (TUG1), a 7.1-kb lncRNA, recruiting and binding to polycomb repressive complex 2 (PRC2), is generally downregulated in non-small cell lung carcinoma (NSCLC) tissues. In a cohort of 192 NSCLC patients, the lower expression of TUG1 was associated with a higher TNM stage and tumor size, as well as poorer overall survival (P<0.001). Univariate and multivariate analyses revealed that TUG1 expression serves as an independent predictor for overall survival (P<0.001). Further experiments revealed that TUG1 expression was induced by p53, and luciferase and chromatin immunoprecipitation (ChIP) assays confirmed that TUG1 was a direct transcriptional target of p53. TUG1 knockdown significantly promoted the proliferation in vitro and in vivo. Moreover, the lncRNA-mediated regulation of the expression of HOX genes in tumorigenesis and development has been recently receiving increased attention. Interestingly, inhibition of TUG1 could upregulate homeobox B7 (HOXB7) expression; ChIP assays demonstrated that the promoter of HOXB7 locus was bound by EZH2 (enhancer of zeste homolog 2), a key component of PRC2, and was H3K27 trimethylated. This TUG1-mediated growth regulation is in part due to specific modulation of HOXB7, thus participating in AKT and MAPK pathways. Together, these results suggest that p53-regulated TUG1 is a growth regulator, which acts in part through control of HOXB7. The p53/TUG1/PRC2/HOXB7 interaction might serve as targets for NSCLC diagnosis and therapy.
Background-Pressure overload is accompanied by cardiac myocyte apoptosis, hypertrophy, and inflammatory/fibrogenic responses that lead to ventricular remodeling and heart failure. Despite incomplete understanding of how this process is regulated, the upregulation of tumor necrosis factor (TNF)-␣ after aortic banding in the myocardium is known. In the present study, we tested our hypothesis that TNF-␣ regulates the cardiac inflammatory response, extracellular matrix homeostasis, and ventricular hypertrophy in response to mechanical overload and contributes to ventricular dysfunction. Methods and Results-C57/BL wild-type mice and TNF-knockout (TNF Ϫ/Ϫ ) mice underwent descending aortic banding or sham operation. Compared with sham-operated mice, wild-type mice with aortic banding showed a significant increase in cardiac TNF-␣ levels, which coincided with myocyte apoptosis, inflammatory response, and cardiac hypertrophy in week 2 and a significant elevation in matrix metalloproteinase-9 activity and impaired cardiac function in weeks 2 and 6. Compared with wild-type mice with aortic banding, TNF Ϫ/Ϫ mice with aortic banding showed attenuated cardiac apoptosis, hypertrophy, inflammatory response, and reparative fibrosis. These mice also showed reduced cardiac matrix metalloproteinase-9 activity and improved cardiac function. Conclusions-Findings from the present study have suggested that TNF-␣ contributes to adverse left ventricular remodeling during pressure overload through regulation of cardiac repair and remodeling, leading to ventricular dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.